Image Smart Segmentation Analysis Against Diabetic Foot Ulcer Using Internet of Things with Virtual Sensing.

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Big Data Pub Date : 2024-04-01 Epub Date: 2023-06-08 DOI:10.1089/big.2022.0283
Chandu Thota, Dinesh Jackson Samuel, Mustafa Musa Jaber, M M Kamruzzaman, Renjith V Ravi, Lydia J Gnanasigamani, R Premalatha
{"title":"Image Smart Segmentation Analysis Against Diabetic Foot Ulcer Using Internet of Things with Virtual Sensing.","authors":"Chandu Thota, Dinesh Jackson Samuel, Mustafa Musa Jaber, M M Kamruzzaman, Renjith V Ravi, Lydia J Gnanasigamani, R Premalatha","doi":"10.1089/big.2022.0283","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic foot ulcer (DFU) is a problem worldwide, and prevention is crucial. The image segmentation analysis of DFU identification plays a significant role. This will produce different segmentation of the same idea, incomplete, imprecise, and other problems. To address these issues, a method of image segmentation analysis of DFU through internet of things with the technique of virtual sensing for semantically similar objects, the analysis of four levels of range segmentation (region-based, edge-based, image-based, and computer-aided design-based range segmentation) for deeper segmentation of images is implemented. In this study, the multimodal is compressed with the object co-segmentation for semantical segmentation. The result is predicting the better validity and reliability assessment. The experimental results demonstrate that the proposed model can efficiently perform segmentation analysis, with a lower error rate, than the existing methodologies. The findings on the multiple-image dataset show that DFU obtains an average segmentation score of 90.85% and 89.03% correspondingly in two types of labeled ratios before DFU with virtual sensing and after DFU without virtual sensing (i.e., 25% and 30%), which is an increase of 10.91% and 12.22% over the previous best results. In live DFU studies, our proposed system improved by 59.1% compared with existing deep segmentation-based techniques and its average image smart segmentation improvements over its contemporaries are 15.06%, 23.94%, and 45.41%, respectively. Proposed range-based segmentation achieves interobserver reliability by 73.9% on the positive test namely likelihood ratio test set with only a 0.25 million parameters at the pace of labeled data.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"155-172"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0283","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic foot ulcer (DFU) is a problem worldwide, and prevention is crucial. The image segmentation analysis of DFU identification plays a significant role. This will produce different segmentation of the same idea, incomplete, imprecise, and other problems. To address these issues, a method of image segmentation analysis of DFU through internet of things with the technique of virtual sensing for semantically similar objects, the analysis of four levels of range segmentation (region-based, edge-based, image-based, and computer-aided design-based range segmentation) for deeper segmentation of images is implemented. In this study, the multimodal is compressed with the object co-segmentation for semantical segmentation. The result is predicting the better validity and reliability assessment. The experimental results demonstrate that the proposed model can efficiently perform segmentation analysis, with a lower error rate, than the existing methodologies. The findings on the multiple-image dataset show that DFU obtains an average segmentation score of 90.85% and 89.03% correspondingly in two types of labeled ratios before DFU with virtual sensing and after DFU without virtual sensing (i.e., 25% and 30%), which is an increase of 10.91% and 12.22% over the previous best results. In live DFU studies, our proposed system improved by 59.1% compared with existing deep segmentation-based techniques and its average image smart segmentation improvements over its contemporaries are 15.06%, 23.94%, and 45.41%, respectively. Proposed range-based segmentation achieves interobserver reliability by 73.9% on the positive test namely likelihood ratio test set with only a 0.25 million parameters at the pace of labeled data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用虚拟传感物联网对糖尿病足溃疡进行图像智能分割分析。
糖尿病足溃疡(DFU)是一个世界性问题,预防至关重要。DFU 识别的图像分割分析起着重要作用。然而,目前对 DFU 的图像分割分析还存在一定的局限性,会产生同一概念的不同分割、不完整、不精确等问题。为解决这些问题,本文提出了一种通过物联网对 DFU 进行图像分割分析的方法,该方法利用虚拟传感技术对语义相似的物体进行分割,通过四个层次的范围分割分析(基于区域的范围分割、基于边缘的范围分割、基于图像的范围分割和基于计算机辅助设计的范围分割)对图像进行更深层次的分割。在本研究中,多模态压缩与对象共分割用于语义分割。结果预测了更好的有效性和可靠性评估。实验结果表明,与现有方法相比,所提出的模型能有效地进行分割分析,且错误率较低。对多图像数据集的研究结果表明,在有虚拟传感的 DFU 之前和无虚拟传感的 DFU 之后(即 25% 和 30%),DFU 在两类标注比例下分别获得了 90.85% 和 89.03% 的平均分割得分,比之前的最佳结果分别提高了 10.91% 和 12.22%。在实时 DFU 研究中,与现有的基于深度分割的技术相比,我们提出的系统提高了 59.1%,其平均图像智能分割改进率分别为 15.06%、23.94% 和 45.41%。在正向测试即似然比测试集上,拟议的基于范围的分割技术在标注数据的速度上只需 25 万个参数,就能实现 73.9% 的观察者间可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
期刊最新文献
DMHANT: DropMessage Hypergraph Attention Network for Information Propagation Prediction. Maximizing Influence in Social Networks Using Combined Local Features and Deep Learning-Based Node Embedding. A Weighted GraphSAGE-Based Context-Aware Approach for Big Data Access Control. Attribute-Based Adaptive Homomorphic Encryption for Big Data Security. Hybrid Deep Learning Approach for Traffic Speed Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1