{"title":"Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets.","authors":"Baohao Xu, Zhiyuan Jin, Lie Shi, Huanian Zhang, Qi Liu, Peng Qin, Kai Jiang, Jing Wang, Wenjing Tang, Wei Xia","doi":"10.1007/s12200-023-00068-1","DOIUrl":null,"url":null,"abstract":"<p><p>As a member of Xenes family, germanene has excellent nonlinear saturable absorption characteristics. In this work, we prepared germanene nanosheets by liquid phase exfoliation and measured their saturation intensity as 0.6 GW/cm<sup>2</sup> with a modulation depth of 8%. Then, conventional solitons with a pulse width of 946 fs and high-energy noise-like pulses with a pulse width of 784 fs were obtained by using germanene nanosheet as a saturable absorber for a mode-locked Erbium-doped fiber laser. The characteristics of the two types of pulses were investigated experimentally. The results reveal that germanene has great potential for modulation devices in ultrafast lasers and can be used as a material for creation of excellent nonlinear optical devices to explore richer applications in ultrafast photonics.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"13"},"PeriodicalIF":4.1000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247613/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00068-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
As a member of Xenes family, germanene has excellent nonlinear saturable absorption characteristics. In this work, we prepared germanene nanosheets by liquid phase exfoliation and measured their saturation intensity as 0.6 GW/cm2 with a modulation depth of 8%. Then, conventional solitons with a pulse width of 946 fs and high-energy noise-like pulses with a pulse width of 784 fs were obtained by using germanene nanosheet as a saturable absorber for a mode-locked Erbium-doped fiber laser. The characteristics of the two types of pulses were investigated experimentally. The results reveal that germanene has great potential for modulation devices in ultrafast lasers and can be used as a material for creation of excellent nonlinear optical devices to explore richer applications in ultrafast photonics.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more