POTENTIATION OF CORTICO-SPINAL OUTPUT VIA TARGETED ELECTRICAL STIMULATION OF THE MOTOR THALAMUS.

Jonathan C Ho, Erinn M Grigsby, Arianna Damiani, Lucy Liang, Josep-Maria Balaguer, Sridula Kallakuri, Jessica Barrios-Martinez, Vahagn Karapetyan, Daryl Fields, Peter C Gerszten, T Kevin Hitchens, Theodora Constantine, Gregory M Adams, Donald J Crammond, Marco Capogrosso, Jorge A Gonzalez-Martinez, Elvira Pirondini
{"title":"POTENTIATION OF CORTICO-SPINAL OUTPUT VIA TARGETED ELECTRICAL STIMULATION OF THE MOTOR THALAMUS.","authors":"Jonathan C Ho, Erinn M Grigsby, Arianna Damiani, Lucy Liang, Josep-Maria Balaguer, Sridula Kallakuri, Jessica Barrios-Martinez, Vahagn Karapetyan, Daryl Fields, Peter C Gerszten, T Kevin Hitchens, Theodora Constantine, Gregory M Adams, Donald J Crammond, Marco Capogrosso, Jorge A Gonzalez-Martinez, Elvira Pirondini","doi":"10.1101/2023.03.08.23286720","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for new therapies aimed at improving volitional muscle activation. Here we hypothesized that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby potentiating motor output. To test this hypothesis, we identified optimal thalamic targets and stimulation parameters that enhanced upper-limb motor evoked potentials and grip forces in anesthetized monkeys. This potentiation persisted after white matter lesions. We replicated these results in humans during intra-operative testing. We then designed a stimulation protocol that immediately improved voluntary grip force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.</p>","PeriodicalId":18659,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/6c/nihpp-2023.03.08.23286720v2.PMC10029067.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.08.23286720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for new therapies aimed at improving volitional muscle activation. Here we hypothesized that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby potentiating motor output. To test this hypothesis, we identified optimal thalamic targets and stimulation parameters that enhanced upper-limb motor evoked potentials and grip forces in anesthetized monkeys. This potentiation persisted after white matter lesions. We replicated these results in humans during intra-operative testing. We then designed a stimulation protocol that immediately improved voluntary grip force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动丘脑的定向脑深部刺激促进了皮质脊髓损伤后的自主运动控制。
脑白质束损伤阻止皮质脊髓下行输入有效激活脊髓运动神经元,导致无法治疗的肌肉麻痹。然而,在大多数情况下,皮质脊髓轴突的损伤是不完整的,神经技术可以增强多余的连接,以恢复运动功能。在这里,我们假设,通过与皮质脊髓运动神经元进行直接兴奋性连接,运动丘脑的脑深部刺激(DBS)可以促进备用皮质脊髓纤维的激活,改善偏瘫肢体的运动。我们首先在猴子身上确定了最佳刺激目标和参数,这些目标和参数可以增强手臂、手和面部肌肉的运动诱发电位以及握力。这种增强作用在脑白质损伤后持续存在。然后,我们通过识别相应的最佳丘脑靶点(VIM/VOP核)将这些结果转化为人类受试者,并在猴子身上复制获得的结果。最后,我们设计了一个DBS方案,该方案立即改善了慢性创伤性脑损伤患者的自主握力控制。我们的研究结果表明,运动丘脑的靶向DBS可能成为治疗运动麻痹的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Database of Clinical Algorithms with Race and Ethnicity. A Linear Mixed Model with Measurement Error Correction (LMM-MEC): A Method for Summary-data-based Multivariable Mendelian Randomization. After the Infection: A Survey of Pathogens and Non-communicable Human Disease. The Extra-Islet Pancreas Supports Autoimmunity in Human Type 1 Diabetes. Keyphrase Identification Using Minimal Labeled Data with Hierarchical Contexts and Transfer Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1