Optimal High-Order Tensor SVD via Tensor-Train Orthogonal Iteration

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2022-02-18 DOI:10.1109/TIT.2022.3152733
Yuchen Zhou;Anru R. Zhang;Lili Zheng;Yazhen Wang
{"title":"Optimal High-Order Tensor SVD via Tensor-Train Orthogonal Iteration","authors":"Yuchen Zhou;Anru R. Zhang;Lili Zheng;Yazhen Wang","doi":"10.1109/TIT.2022.3152733","DOIUrl":null,"url":null,"abstract":"This paper studies a general framework for high-order tensor SVD. We propose a new computationally efficient algorithm, tensor-train orthogonal iteration (TTOI), that aims to estimate the low tensor-train rank structure from the noisy high-order tensor observation. The proposed TTOI consists of initialization via TT-SVD [Oseledets (2011)] and new iterative backward/forward updates. We develop the general upper bound on estimation error for TTOI with the support of several new representation lemmas on tensor matricizations. By developing a matching information-theoretic lower bound, we also prove that TTOI achieves the minimax optimality under the spiked tensor model. The merits of the proposed TTOI are illustrated through applications to estimation and dimension reduction of high-order Markov processes, numerical studies, and a real data example on New York City taxi travel records. The software of the proposed algorithm is available online (\n<uri>https://github.com/Lili-Zheng-stat/TTOI</uri>\n).","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"68 6","pages":"3991-4019"},"PeriodicalIF":2.2000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585995/pdf/nihms-1809459.pdf","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9717278/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 17

Abstract

This paper studies a general framework for high-order tensor SVD. We propose a new computationally efficient algorithm, tensor-train orthogonal iteration (TTOI), that aims to estimate the low tensor-train rank structure from the noisy high-order tensor observation. The proposed TTOI consists of initialization via TT-SVD [Oseledets (2011)] and new iterative backward/forward updates. We develop the general upper bound on estimation error for TTOI with the support of several new representation lemmas on tensor matricizations. By developing a matching information-theoretic lower bound, we also prove that TTOI achieves the minimax optimality under the spiked tensor model. The merits of the proposed TTOI are illustrated through applications to estimation and dimension reduction of high-order Markov processes, numerical studies, and a real data example on New York City taxi travel records. The software of the proposed algorithm is available online ( https://github.com/Lili-Zheng-stat/TTOI ).

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量序列正交迭代的最优高阶张量SVD
本文研究了高阶张量奇异值分解的一般框架。我们提出了一种新的计算效率高的算法,张量序列正交迭代(TTOI),旨在从有噪声的高阶张量观测中估计低张量序列的秩结构。所提出的TTOI包括通过TT-SVD的初始化[Oseledets(2011)]和新的迭代后向/前向更新。在张量矩阵的几个新表示引理的支持下,我们发展了TTOI估计误差的一般上界。通过建立匹配信息论的下界,我们还证明了TTOI在尖峰张量模型下达到了极大极小最优性。通过应用于高阶马尔可夫过程的估计和降维、数值研究以及纽约市出租车出行记录的实际数据示例,说明了所提出的TTOI的优点。所提出的算法的软件可以在线获得(https://github.com/Lili-Zheng-stat/TTOI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1