Olga Taran, Joakim Tutt, Taras Holotyak, Roman Chaban, Slavi Bonev, Slava Voloshynovskiy
{"title":"Mobile authentication of copy detection patterns.","authors":"Olga Taran, Joakim Tutt, Taras Holotyak, Roman Chaban, Slavi Bonev, Slava Voloshynovskiy","doi":"10.1186/s13635-023-00140-5","DOIUrl":null,"url":null,"abstract":"<p><p>In the recent years, the copy detection patterns (CDP) attracted a lot of attention as a link between the physical and digital worlds, which is of great interest for the internet of things and brand protection applications. However, the security of CDP in terms of their reproducibility by unauthorized parties or clonability remains largely unexplored. In this respect, this paper addresses a problem of anti-counterfeiting of physical objects and aims at investigating the authentication aspects and the resistances to illegal copying of the modern CDP from machine learning perspectives. A special attention is paid to a reliable authentication under the real-life verification conditions when the codes are printed on an industrial printer and enrolled via modern mobile phones under regular light conditions. The theoretical and empirical investigation of authentication aspects of CDP is performed with respect to four types of copy fakes from the point of view of (i) multi-class supervised classification as a baseline approach and (ii) one-class classification as a real-life application case. The obtained results show that the modern machine-learning approaches and the technical capacities of modern mobile phones allow to reliably authenticate CDP on end-user mobile phones under the considered classes of fakes.</p>","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244288/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-023-00140-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6
Abstract
In the recent years, the copy detection patterns (CDP) attracted a lot of attention as a link between the physical and digital worlds, which is of great interest for the internet of things and brand protection applications. However, the security of CDP in terms of their reproducibility by unauthorized parties or clonability remains largely unexplored. In this respect, this paper addresses a problem of anti-counterfeiting of physical objects and aims at investigating the authentication aspects and the resistances to illegal copying of the modern CDP from machine learning perspectives. A special attention is paid to a reliable authentication under the real-life verification conditions when the codes are printed on an industrial printer and enrolled via modern mobile phones under regular light conditions. The theoretical and empirical investigation of authentication aspects of CDP is performed with respect to four types of copy fakes from the point of view of (i) multi-class supervised classification as a baseline approach and (ii) one-class classification as a real-life application case. The obtained results show that the modern machine-learning approaches and the technical capacities of modern mobile phones allow to reliably authenticate CDP on end-user mobile phones under the considered classes of fakes.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy