Mobile authentication of copy detection patterns.

IF 2.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS EURASIP Journal on Information Security Pub Date : 2023-01-01 Epub Date: 2023-06-06 DOI:10.1186/s13635-023-00140-5
Olga Taran, Joakim Tutt, Taras Holotyak, Roman Chaban, Slavi Bonev, Slava Voloshynovskiy
{"title":"Mobile authentication of copy detection patterns.","authors":"Olga Taran, Joakim Tutt, Taras Holotyak, Roman Chaban, Slavi Bonev, Slava Voloshynovskiy","doi":"10.1186/s13635-023-00140-5","DOIUrl":null,"url":null,"abstract":"<p><p>In the recent years, the copy detection patterns (CDP) attracted a lot of attention as a link between the physical and digital worlds, which is of great interest for the internet of things and brand protection applications. However, the security of CDP in terms of their reproducibility by unauthorized parties or clonability remains largely unexplored. In this respect, this paper addresses a problem of anti-counterfeiting of physical objects and aims at investigating the authentication aspects and the resistances to illegal copying of the modern CDP from machine learning perspectives. A special attention is paid to a reliable authentication under the real-life verification conditions when the codes are printed on an industrial printer and enrolled via modern mobile phones under regular light conditions. The theoretical and empirical investigation of authentication aspects of CDP is performed with respect to four types of copy fakes from the point of view of (i) multi-class supervised classification as a baseline approach and (ii) one-class classification as a real-life application case. The obtained results show that the modern machine-learning approaches and the technical capacities of modern mobile phones allow to reliably authenticate CDP on end-user mobile phones under the considered classes of fakes.</p>","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244288/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-023-00140-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6

Abstract

In the recent years, the copy detection patterns (CDP) attracted a lot of attention as a link between the physical and digital worlds, which is of great interest for the internet of things and brand protection applications. However, the security of CDP in terms of their reproducibility by unauthorized parties or clonability remains largely unexplored. In this respect, this paper addresses a problem of anti-counterfeiting of physical objects and aims at investigating the authentication aspects and the resistances to illegal copying of the modern CDP from machine learning perspectives. A special attention is paid to a reliable authentication under the real-life verification conditions when the codes are printed on an industrial printer and enrolled via modern mobile phones under regular light conditions. The theoretical and empirical investigation of authentication aspects of CDP is performed with respect to four types of copy fakes from the point of view of (i) multi-class supervised classification as a baseline approach and (ii) one-class classification as a real-life application case. The obtained results show that the modern machine-learning approaches and the technical capacities of modern mobile phones allow to reliably authenticate CDP on end-user mobile phones under the considered classes of fakes.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复制检测模式的移动身份验证。
近年来,拷贝检测模式(CDP)作为连接物理世界和数字世界的纽带引起了人们的广泛关注,这对物联网和品牌保护应用产生了极大的兴趣。然而,CDP在未经授权方的可复制性或可复制性方面的安全性在很大程度上仍未得到探索。在这方面,本文解决了实物防伪问题,旨在从机器学习的角度研究现代CDP的认证方面和对非法复制的抵抗力。当代码在工业打印机上打印并在常规光线条件下通过现代手机登记时,特别注意在真实验证条件下的可靠认证。从(i)作为基线方法的多类监督分类和(ii)作为现实应用案例的一类分类的角度,对CDP的认证方面进行了理论和实证研究,涉及四种类型的仿制品。所获得的结果表明,现代机器学习方法和现代手机的技术能力允许在所考虑的伪造类别下在最终用户手机上可靠地验证CDP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EURASIP Journal on Information Security
EURASIP Journal on Information Security COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
8.80
自引率
0.00%
发文量
6
审稿时长
13 weeks
期刊介绍: The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy
期刊最新文献
Access control for trusted data sharing DQ-NN and phantom routing for enhanced source location privacy for IoT under multiple source and destination Trajectory-aware privacy-preserving method with local differential privacy in crowdsourcing Enhancing internet of things security using entropy-informed RF-DNA fingerprint learning from Gabor-based images Cover-source mismatch in steganalysis: systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1