Nader Khani, Roya Abedi Soleimani, Sara Chadorshabi, Bahareh Pouragha Moutab, Payam Gonbari Milani, Aziz Homayouni Rad
{"title":"Postbiotics as candidates in biofilm inhibition in food industries.","authors":"Nader Khani, Roya Abedi Soleimani, Sara Chadorshabi, Bahareh Pouragha Moutab, Payam Gonbari Milani, Aziz Homayouni Rad","doi":"10.1093/lambio/ovad069","DOIUrl":null,"url":null,"abstract":"<p><p>Food-borne pathogen-related biofilms in food processing environments pose significant risks to human health. To ensure human and environmental safety, natural substances with anti-microbial properties and generally recognized as safe (GRAS) status are the future disinfectants of the food industry. The use of postbiotics in food products is gaining attention due to their many benefits. Postbiotics are soluble substances produced by probiotics or released after their lysis, such as bacteriocins, biosurfactants (BSs), and exopolysaccharides (EPS). Postbiotics have drawn attention because of their clear chemical structure, safety dose parameters, long shelf life, and the content of various signaling molecules, which may have anti-biofilm and antibacterial activities. The main mechanisms of postbiotics to combat biofilm contain suppression of twitching motility, disturbing quorum sensing (QS), and reduction of virulence factors. However, there are obstacles to using these compounds in the food matrix because some factors (temperature and pH) can limit the anti-biofilm impact of postbiotics. Therefore, by using encapsulation or application of these compounds in packaging films, the effect of interfering factors can be eliminated. This review summarizes the concept and safety of postbiotics, focusing on their antibiofilm effect, as well as discussing the encapsulation of postbiotics and their application in packaging films.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovad069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Food-borne pathogen-related biofilms in food processing environments pose significant risks to human health. To ensure human and environmental safety, natural substances with anti-microbial properties and generally recognized as safe (GRAS) status are the future disinfectants of the food industry. The use of postbiotics in food products is gaining attention due to their many benefits. Postbiotics are soluble substances produced by probiotics or released after their lysis, such as bacteriocins, biosurfactants (BSs), and exopolysaccharides (EPS). Postbiotics have drawn attention because of their clear chemical structure, safety dose parameters, long shelf life, and the content of various signaling molecules, which may have anti-biofilm and antibacterial activities. The main mechanisms of postbiotics to combat biofilm contain suppression of twitching motility, disturbing quorum sensing (QS), and reduction of virulence factors. However, there are obstacles to using these compounds in the food matrix because some factors (temperature and pH) can limit the anti-biofilm impact of postbiotics. Therefore, by using encapsulation or application of these compounds in packaging films, the effect of interfering factors can be eliminated. This review summarizes the concept and safety of postbiotics, focusing on their antibiofilm effect, as well as discussing the encapsulation of postbiotics and their application in packaging films.