FET fusion oncoproteins disrupt physiologic DNA repair and create a targetable opportunity for ATR inhibitor therapy.

Shruti Menon, Daniel Gracilla, Marcus R Breese, Yone Phar Lin, Filemon Dela Cruz, Tamar Feinberg, Elisa de Stanchina, Ana-Florina Galic, Hannah Allegakoen, Shruthi Perati, Nicholas Wen, Ann Heslin, Max A Horlbeck, Jonathan Weissman, E Alejandro Sweet-Cordero, Trever G Bivona, Asmin Tulpule
{"title":"FET fusion oncoproteins disrupt physiologic DNA repair and create a targetable opportunity for ATR inhibitor therapy.","authors":"Shruti Menon, Daniel Gracilla, Marcus R Breese, Yone Phar Lin, Filemon Dela Cruz, Tamar Feinberg, Elisa de Stanchina, Ana-Florina Galic, Hannah Allegakoen, Shruthi Perati, Nicholas Wen, Ann Heslin, Max A Horlbeck, Jonathan Weissman, E Alejandro Sweet-Cordero, Trever G Bivona, Asmin Tulpule","doi":"10.1101/2023.04.30.538578","DOIUrl":null,"url":null,"abstract":"<p><p>In cancers with genetic loss of specific DNA damage response (DDR) genes (i.e., BRCA1/2 tumor suppressor mutations), synthetic lethal targeting of compensatory DDR pathways has translated into clinical benefit for patients. Whether and how growth-promoting oncogenes might also create tumor-specific vulnerabilities within DDR networks is not well understood. Here we focus on Ewing sarcoma, a FET fusion oncoprotein (EWSR1-FLI1) driven pediatric bone tumor, as a model for the class of FET rearranged cancers. Native FET family members are among the earliest factors recruited to DNA double-strand breaks (DSBs), though the function of both native FET proteins and FET fusion oncoproteins in DNA repair remains to be defined. We discover that EWSR1-FLI1 and other FET fusion oncoproteins are recruited to DNA DSBs and impair the activation and downstream signaling of the DNA damage sensor ATM. In multiple FET rearranged cancers, we establish the compensatory ATR signaling axis as a collateral dependency and therapeutic target using patient-derived xenograft models. In summary, we describe how oncogenes can disrupt physiologic DNA repair and provide the preclinical rationale for specifically testing ATR inhibitors in FET rearranged cancers as part of ongoing early phase clinical trials.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/db/nihpp-2023.04.30.538578v2.PMC10187251.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.04.30.538578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In cancers with genetic loss of specific DNA damage response (DDR) genes (i.e., BRCA1/2 tumor suppressor mutations), synthetic lethal targeting of compensatory DDR pathways has translated into clinical benefit for patients. Whether and how growth-promoting oncogenes might also create tumor-specific vulnerabilities within DDR networks is not well understood. Here we focus on Ewing sarcoma, a FET fusion oncoprotein (EWSR1-FLI1) driven pediatric bone tumor, as a model for the class of FET rearranged cancers. Native FET family members are among the earliest factors recruited to DNA double-strand breaks (DSBs), though the function of both native FET proteins and FET fusion oncoproteins in DNA repair remains to be defined. We discover that EWSR1-FLI1 and other FET fusion oncoproteins are recruited to DNA DSBs and impair the activation and downstream signaling of the DNA damage sensor ATM. In multiple FET rearranged cancers, we establish the compensatory ATR signaling axis as a collateral dependency and therapeutic target using patient-derived xenograft models. In summary, we describe how oncogenes can disrupt physiologic DNA repair and provide the preclinical rationale for specifically testing ATR inhibitors in FET rearranged cancers as part of ongoing early phase clinical trials.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FET融合癌蛋白破坏癌症的生理DNA修复网络。
虽然致癌基因促进癌症细胞生长,但无限制的增殖是细胞稳态网络(如DNA损伤反应(DDR))的重要应激源。为了实现癌基因耐受,许多癌症通过DDR途径和下游效应物(例如ATM或p53肿瘤抑制突变)的遗传损失来禁用肿瘤抑制性DDR信号传导。致癌基因是否以及如何通过在生理DDR网络中产生类似的功能缺陷来帮助“自我耐受”尚不清楚。在这里,我们重点关注尤因肉瘤,一种FET融合癌蛋白(EWS-FLI1)驱动的儿童骨肿瘤,作为FET重排癌症的模型。天然FET蛋白家族成员是DDR过程中DNA双链断裂(DSBs)最早招募的因素之一,尽管天然FET蛋白质和FET融合癌蛋白在DNA修复中的功能仍有待确定。使用DDR的临床前机制研究和患者肿瘤的临床基因组数据集,我们发现EWS-FLI1融合癌蛋白被募集到DNA DSBs中,并干扰天然FET(EWS)蛋白激活DNA损伤传感器ATM的功能。由于FET融合介导的DDR干扰,我们确定功能性ATM缺陷是尤因肉瘤的主要DNA修复缺陷,而代偿性ATR信号轴是多种FET重排癌症的附带依赖性和治疗靶点。更普遍地说,我们发现融合癌蛋白向DNA损伤位点的异常募集可以破坏生理性DSB修复,揭示了促生长癌基因如何在肿瘤抑制DDR网络中产生功能缺陷的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audiovisual cues must be predictable and win-paired to drive risky choice. High-resolution promoter interaction analysis implicates genes involved in the activation of Type 3 Innate Lymphoid Cells in autoimmune disease risk. Deriving genetic codes for molecular phenotypes from first principles. High frequency spike inference with particle Gibbs sampling. Spontaneous replication fork collapse regulates telomere length homeostasis in wild type yeast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1