Jingwei Chen, Shiyu Xie, Hongyun Jiang, Hui Yang, Feiping Nie
{"title":"A Novel k-Means Framework via Constrained Relaxation and Spectral Rotation.","authors":"Jingwei Chen, Shiyu Xie, Hongyun Jiang, Hui Yang, Feiping Nie","doi":"10.1109/TNNLS.2023.3282938","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to its simplicity, the traditional k - means (Lloyd heuristic) clustering method plays a vital role in a variety of machine-learning applications. Disappointingly, the Lloyd heuristic is prone to local minima. In this article, we propose k - mRSR, which converts the sum-of-squared error (SSE) (Lloyd) into a combinatorial optimization problem and incorporates a relaxed trace maximization term and an improved spectral rotation term. The main advantage of k - mRSR is that it only needs to solve the membership matrix instead of computing the cluster centers in each iteration. Furthermore, we present a nonredundant coordinate descent method that brings the discrete solution infinitely close to the scaled partition matrix. Two novel findings from the experiments are that k - mRSR can further decrease (increase) the objective function values of the k - means obtained by Lloyd (CD), while Lloyd (CD) cannot decrease (increase) the objective function obtained by k - mRSR. In addition, the results of extensive experiments on 15 datasets indicate that k - mRSR outperforms both Lloyd and CD in terms of the objective function value and outperforms other state-of-the-art methods in terms of clustering performance.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3282938","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to its simplicity, the traditional k - means (Lloyd heuristic) clustering method plays a vital role in a variety of machine-learning applications. Disappointingly, the Lloyd heuristic is prone to local minima. In this article, we propose k - mRSR, which converts the sum-of-squared error (SSE) (Lloyd) into a combinatorial optimization problem and incorporates a relaxed trace maximization term and an improved spectral rotation term. The main advantage of k - mRSR is that it only needs to solve the membership matrix instead of computing the cluster centers in each iteration. Furthermore, we present a nonredundant coordinate descent method that brings the discrete solution infinitely close to the scaled partition matrix. Two novel findings from the experiments are that k - mRSR can further decrease (increase) the objective function values of the k - means obtained by Lloyd (CD), while Lloyd (CD) cannot decrease (increase) the objective function obtained by k - mRSR. In addition, the results of extensive experiments on 15 datasets indicate that k - mRSR outperforms both Lloyd and CD in terms of the objective function value and outperforms other state-of-the-art methods in terms of clustering performance.
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.