{"title":"Integrated Bioinformatics Analysis to Screen Hub Gene Signatures for Fetal Growth Restriction.","authors":"Jingjin Yang, Yuxin Liu, Minyue Dong","doi":"10.1155/2023/3367406","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fetal growth restriction (FGR) is the impairment of the biological growth potential of the fetus and often leads to adverse pregnancy outcomes. The molecular mechanisms for the development of FGR, however, are still unclear. The purpose of this study is to identify critical genes associated with FGR through an integrated bioinformatics approach and explore the potential pathogenesis of FGR.</p><p><strong>Methods: </strong>We downloaded FGR-related gene microarray data, used weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs), and protein-protein interaction (PPI) networks to screen hub genes. The GSE24129 gene set was used for validation of critical gene expression levels and diagnostic capabilities.</p><p><strong>Results: </strong>A weighted gene co-expression network was constructed, and 5000 genes were divided into 12 modules. Of these modules, the blue module showed the closest relationship with FGR. Taking the intersection of the DEGs and genes in the blue module as pivotal genes, 277 genes were identified, and 20 crucial genes were screened from the PPI network. The GSE24129 gene set verified the expression of 20 genes, and CXCL9, CXCR3, and ITGAX genes were identified as actual pivotal genes. The expression levels of CXCL9, CXCR3, and ITGAX were increased in both the training and validation sets, and ROC curve validation revealed that these three pivotal genes had a significant diagnostic ability for FGR. Single-gene GSEA results showed that all three core genes activated \"hematopoietic cell lineage\" and \"cell adhesion molecules\" and inhibited the \"cGMP-PKG signaling pathway\" in the development of FGR. CXCL9, CXCR3, and ITGAX may therefore be closely associated with the development of FGR and may serve as potential biomarkers for the diagnosis and treatment of FGR.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2023 ","pages":"3367406"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10079385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/3367406","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Fetal growth restriction (FGR) is the impairment of the biological growth potential of the fetus and often leads to adverse pregnancy outcomes. The molecular mechanisms for the development of FGR, however, are still unclear. The purpose of this study is to identify critical genes associated with FGR through an integrated bioinformatics approach and explore the potential pathogenesis of FGR.
Methods: We downloaded FGR-related gene microarray data, used weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs), and protein-protein interaction (PPI) networks to screen hub genes. The GSE24129 gene set was used for validation of critical gene expression levels and diagnostic capabilities.
Results: A weighted gene co-expression network was constructed, and 5000 genes were divided into 12 modules. Of these modules, the blue module showed the closest relationship with FGR. Taking the intersection of the DEGs and genes in the blue module as pivotal genes, 277 genes were identified, and 20 crucial genes were screened from the PPI network. The GSE24129 gene set verified the expression of 20 genes, and CXCL9, CXCR3, and ITGAX genes were identified as actual pivotal genes. The expression levels of CXCL9, CXCR3, and ITGAX were increased in both the training and validation sets, and ROC curve validation revealed that these three pivotal genes had a significant diagnostic ability for FGR. Single-gene GSEA results showed that all three core genes activated "hematopoietic cell lineage" and "cell adhesion molecules" and inhibited the "cGMP-PKG signaling pathway" in the development of FGR. CXCL9, CXCR3, and ITGAX may therefore be closely associated with the development of FGR and may serve as potential biomarkers for the diagnosis and treatment of FGR.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.