Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models.

IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2023-06-01 Epub Date: 2023-01-22 DOI:10.1007/s11336-022-09900-7
Yinghan Chen, Steven Andrew Culpepper, Yuguo Chen
{"title":"Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models.","authors":"Yinghan Chen, Steven Andrew Culpepper, Yuguo Chen","doi":"10.1007/s11336-022-09900-7","DOIUrl":null,"url":null,"abstract":"<p><p>The specification of the [Formula: see text] matrix in cognitive diagnosis models is important for correct classification of attribute profiles. Researchers have proposed many methods for estimation and validation of the data-driven [Formula: see text] matrices. However, inference of the number of attributes in the general restricted latent class model remains an open question. We propose a Bayesian framework for general restricted latent class models and use the spike-and-slab prior to avoid the computation issues caused by the varying dimensions of model parameters associated with the number of attributes, K. We develop an efficient Metropolis-within-Gibbs algorithm to estimate K and the corresponding [Formula: see text] matrix simultaneously. The proposed algorithm uses the stick-breaking construction to mimic an Indian buffet process and employs a novel Metropolis-Hastings transition step to encourage exploring the sample space associated with different values of K. We evaluate the performance of the proposed method through a simulation study under different model specifications and apply the method to a real data set related to a fluid intelligence matrix reasoning test.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":"88 2","pages":"613-635"},"PeriodicalIF":3.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-022-09900-7","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The specification of the [Formula: see text] matrix in cognitive diagnosis models is important for correct classification of attribute profiles. Researchers have proposed many methods for estimation and validation of the data-driven [Formula: see text] matrices. However, inference of the number of attributes in the general restricted latent class model remains an open question. We propose a Bayesian framework for general restricted latent class models and use the spike-and-slab prior to avoid the computation issues caused by the varying dimensions of model parameters associated with the number of attributes, K. We develop an efficient Metropolis-within-Gibbs algorithm to estimate K and the corresponding [Formula: see text] matrix simultaneously. The proposed algorithm uses the stick-breaking construction to mimic an Indian buffet process and employs a novel Metropolis-Hastings transition step to encourage exploring the sample space associated with different values of K. We evaluate the performance of the proposed method through a simulation study under different model specifications and apply the method to a real data set related to a fluid intelligence matrix reasoning test.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
限制潜类模型中未知属性数量的贝叶斯推断。
认知诊断模型中[公式:见正文]矩阵的规范对于正确划分属性特征非常重要。研究人员提出了许多方法来估计和验证数据驱动的[公式:见正文]矩阵。然而,在一般的受限潜类模型中,属性数量的推断仍然是一个未决问题。我们为一般受限潜类模型提出了一个贝叶斯框架,并使用尖峰和平板先验来避免因与属性数 K 相关的模型参数维度不同而引起的计算问题。我们开发了一种高效的 Metropolis-within-Gibbs 算法,以同时估计 K 和相应的[公式:见正文]矩阵。我们通过不同模型规格下的模拟研究评估了所提方法的性能,并将该方法应用于与流体智能矩阵推理测试相关的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Navigating Cognitive Maps: Statistical Analysis of 3D Path Data in Minecraft. Identification and Scaling of Latent Variables in Ordinal Factor Analysis. A Tutorial on Estimating the Precision of Individual Test Scores for Anyone Constructing and Using Psychological Tests. Regularized Joint Maximum Likelihood Estimation of Latent Space Item Response Models. Estimating Latent Distribution of Item Response Theory Using Kernel Density Method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1