Francisco Acuña , Enrique Leo Portiansky , María Angélica Miglino , Mirta Alicia Flamini , Claudio Gustavo Barbeito
{"title":"Embryonic-placental relationship in Lagostomus maximus as compared to other hystricognath rodents and eutherian mammals","authors":"Francisco Acuña , Enrique Leo Portiansky , María Angélica Miglino , Mirta Alicia Flamini , Claudio Gustavo Barbeito","doi":"10.1016/j.zool.2023.126082","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Reproductive specializations in caviomorphs (infraorder Hystricognathi), are very peculiar within the Order Rodentia. These include long gestations, the birth of offspring with an extreme degree of precociality, and short lactation periods. This study describes the embryo-placental relationship of viable implantation sites (IS) of the plains </span>viscacha, </span><span><em>Lagostomus</em><em> maximus</em></span><span>, after 46 post-coital days. The observations recorded in this study are comparatively discussed with those of other hystricognaths and eutherians. At this stage, the embryo resembles that of other eutherians. At this time of embryo development<span>, the placenta exhibits a size, shape, and organization similar to that it will have in its mature state. Besides, the subplacenta is already highly folded. These characteristics are adequate to sustain the development of future precocial offspring. The mesoplacenta, a structure present in other hystricognaths and related to uterine regeneration is described for the first time in this species. This detailed description of the placental and embryonic structure<span> contributes to the knowledge of the reproductive and developmental biology of the viscacha, as well as that of hystricognaths. These characteristics will allow testing other hypotheses related to the morphology and physiology of the placenta and subplacenta, and their relationship with the growth and development of precocial offspring in Hystricognathi.</span></span></span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200623000156","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Reproductive specializations in caviomorphs (infraorder Hystricognathi), are very peculiar within the Order Rodentia. These include long gestations, the birth of offspring with an extreme degree of precociality, and short lactation periods. This study describes the embryo-placental relationship of viable implantation sites (IS) of the plains viscacha, Lagostomus maximus, after 46 post-coital days. The observations recorded in this study are comparatively discussed with those of other hystricognaths and eutherians. At this stage, the embryo resembles that of other eutherians. At this time of embryo development, the placenta exhibits a size, shape, and organization similar to that it will have in its mature state. Besides, the subplacenta is already highly folded. These characteristics are adequate to sustain the development of future precocial offspring. The mesoplacenta, a structure present in other hystricognaths and related to uterine regeneration is described for the first time in this species. This detailed description of the placental and embryonic structure contributes to the knowledge of the reproductive and developmental biology of the viscacha, as well as that of hystricognaths. These characteristics will allow testing other hypotheses related to the morphology and physiology of the placenta and subplacenta, and their relationship with the growth and development of precocial offspring in Hystricognathi.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.