A Survey of Current Machine Learning Approaches to Student Free-Text Evaluation for Intelligent Tutoring.

IF 4.7 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Artificial Intelligence in Education Pub Date : 2022-11-28 DOI:10.1007/s40593-022-00323-0
Xiaoyu Bai, Manfred Stede
{"title":"A Survey of Current Machine Learning Approaches to Student Free-Text Evaluation for Intelligent Tutoring.","authors":"Xiaoyu Bai, Manfred Stede","doi":"10.1007/s40593-022-00323-0","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have seen increased interests in applying the latest technological innovations, including artificial intelligence (AI) and machine learning (ML), to the field of education. One of the main areas of interest to researchers is the use of ML to assist teachers in assessing students' work on the one hand and to promote effective self-tutoring on the other hand. In this paper, we present a survey of the latest ML approaches to the automated evaluation of students' natural language free-text, including both short answers to questions and full essays. Existing systematic literature reviews on the subject often emphasise an exhaustive and methodical study selection process and do not provide much detail on individual studies or a technical background to the task. In contrast, we present an accessible survey of the current state-of-the-art in student free-text evaluation and target a wider audience that is not necessarily familiar with the task or with ML-based text analysis in natural language processing (NLP). We motivate and contextualise the task from an application perspective, illustrate popular feature-based and neural model architectures and present a selection of the latest work in the area. We also remark on trends and challenges in the field.</p>","PeriodicalId":46637,"journal":{"name":"International Journal of Artificial Intelligence in Education","volume":" ","pages":"1-39"},"PeriodicalIF":4.7000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Intelligence in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40593-022-00323-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have seen increased interests in applying the latest technological innovations, including artificial intelligence (AI) and machine learning (ML), to the field of education. One of the main areas of interest to researchers is the use of ML to assist teachers in assessing students' work on the one hand and to promote effective self-tutoring on the other hand. In this paper, we present a survey of the latest ML approaches to the automated evaluation of students' natural language free-text, including both short answers to questions and full essays. Existing systematic literature reviews on the subject often emphasise an exhaustive and methodical study selection process and do not provide much detail on individual studies or a technical background to the task. In contrast, we present an accessible survey of the current state-of-the-art in student free-text evaluation and target a wider audience that is not necessarily familiar with the task or with ML-based text analysis in natural language processing (NLP). We motivate and contextualise the task from an application perspective, illustrate popular feature-based and neural model architectures and present a selection of the latest work in the area. We also remark on trends and challenges in the field.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当前用于智能辅导的学生自由文本评估的机器学习方法调查。
近年来,将人工智能(AI)和机器学习(ML)等最新技术创新应用于教育领域的兴趣与日俱增。研究人员感兴趣的主要领域之一是利用 ML 一方面协助教师评估学生的作业,另一方面促进有效的自我辅导。在本文中,我们介绍了对学生的自然语言自由文本(包括简短的问题答案和完整的文章)进行自动评估的最新 ML 方法。有关该主题的现有系统性文献综述通常强调详尽、有条不紊的研究选择过程,并不提供有关单项研究或任务技术背景的详细信息。与此相反,我们对当前学生自由文本评价的最新进展进行了调查,并将目标对准了不一定熟悉该任务或自然语言处理(NLP)中基于 ML 的文本分析的广大读者。我们从应用的角度对任务进行了激励和背景分析,说明了流行的基于特征和神经模型的架构,并介绍了该领域的最新研究成果。我们还对该领域的趋势和挑战进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Artificial Intelligence in Education
International Journal of Artificial Intelligence in Education COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
11.10
自引率
6.10%
发文量
32
期刊介绍: IJAIED publishes papers concerned with the application of AI to education. It aims to help the development of principles for the design of computer-based learning systems. Its premise is that such principles involve the modelling and representation of relevant aspects of knowledge, before implementation or during execution, and hence require the application of AI techniques and concepts. IJAIED has a very broad notion of the scope of AI and of a ''computer-based learning system'', as indicated by the following list of topics considered to be within the scope of IJAIED: adaptive and intelligent multimedia and hypermedia systemsagent-based learning environmentsAIED and teacher educationarchitectures for AIED systemsassessment and testing of learning outcomesauthoring systems and shells for AIED systemsbayesian and statistical methodscase-based systemscognitive developmentcognitive models of problem-solvingcognitive tools for learningcomputer-assisted language learningcomputer-supported collaborative learningdialogue (argumentation, explanation, negotiation, etc.) discovery environments and microworldsdistributed learning environmentseducational roboticsembedded training systemsempirical studies to inform the design of learning environmentsenvironments to support the learning of programmingevaluation of AIED systemsformal models of components of AIED systemshelp and advice systemshuman factors and interface designinstructional design principlesinstructional planningintelligent agents on the internetintelligent courseware for computer-based trainingintelligent tutoring systemsknowledge and skill acquisitionknowledge representation for instructionmodelling metacognitive skillsmodelling pedagogical interactionsmotivationnatural language interfaces for instructional systemsnetworked learning and teaching systemsneural models applied to AIED systemsperformance support systemspractical, real-world applications of AIED systemsqualitative reasoning in simulationssituated learning and cognitive apprenticeshipsocial and cultural aspects of learningstudent modelling and cognitive diagnosissupport for knowledge building communitiessupport for networked communicationtheories of learning and conceptual changetools for administration and curriculum integrationtools for the guided exploration of information resources
期刊最新文献
AI Adaptivity in a Mixed-Reality System Improves Learning Debiasing Education Algorithms Facial Expression Recognition for Examining Emotional Regulation in Synchronous Online Collaborative Learning Multilingual Age of Exposure 2.0 Examining the Effect of Assessment Construct Characteristics on Machine Learning Scoring of Scientific Argumentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1