Kinetic control in amyloid polymorphism: Different agitation and solution conditions promote distinct amyloid polymorphs of alpha-synuclein

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-07-01 DOI:10.1016/j.bbapap.2023.140917
Santosh Devi , Dushyant Kumar Garg , Rajiv Bhat
{"title":"Kinetic control in amyloid polymorphism: Different agitation and solution conditions promote distinct amyloid polymorphs of alpha-synuclein","authors":"Santosh Devi ,&nbsp;Dushyant Kumar Garg ,&nbsp;Rajiv Bhat","doi":"10.1016/j.bbapap.2023.140917","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Aggregation of neuronal protein α-synuclein is implicated in synucleinopathies, including Parkinson's disease. Despite abundant in vitro studies<span>, the mechanism of α-synuclein assembly process remains ambiguous. In this work, α-synuclein aggregation was induced by its constant mixing in two separate modes, either by agitation in a 96-well microplate reader (MP) or in microcentrifuge tubes using a shaker incubator (SI). Aggregation in both modes occurred through a sigmoidal growth pattern with a well-defined lag, growth, and saturation phase. The end-stage MP- and SI-derived aggregates displayed distinct differences in morphological, biochemical, and spectral signatures as discerned through AFM, proteinase-K digestion, </span></span>FTIR, Raman, and CD spectroscopy. The MP-derived aggregates showed irregular morphology with a significant random coil conformation, contrary to SI-derived aggregates, which showed typical β-sheet fibrillar structures. The end-stage MP aggregates convert to β-rich SI-like aggregates upon 1) seeding with SI-derived aggregates and 2) agitating in SI. We conclude that end-stage MP aggregates were in a kinetically trapped conformation, whose kinetic barrier was bypassed upon either seeding by SI-derived fibrils or shaking in SI. We further show that MP-derived aggregates that form in the presence of </span>sorbitol<span>, an osmolyte, displayed a β-rich signature, indicating that the preferential exclusion effect of osmolytes helped overcome the kinetic barrier. Our findings help in unravelling the kinetic origin of different α-synuclein aggregated polymorphs (strains) that encode diverse variants of synucleinopathies. We demonstrate that kinetic control shapes the polymorphic landscape of α-synuclein aggregates, both through de novo generation of polymorphs, and by their interconversion.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Aggregation of neuronal protein α-synuclein is implicated in synucleinopathies, including Parkinson's disease. Despite abundant in vitro studies, the mechanism of α-synuclein assembly process remains ambiguous. In this work, α-synuclein aggregation was induced by its constant mixing in two separate modes, either by agitation in a 96-well microplate reader (MP) or in microcentrifuge tubes using a shaker incubator (SI). Aggregation in both modes occurred through a sigmoidal growth pattern with a well-defined lag, growth, and saturation phase. The end-stage MP- and SI-derived aggregates displayed distinct differences in morphological, biochemical, and spectral signatures as discerned through AFM, proteinase-K digestion, FTIR, Raman, and CD spectroscopy. The MP-derived aggregates showed irregular morphology with a significant random coil conformation, contrary to SI-derived aggregates, which showed typical β-sheet fibrillar structures. The end-stage MP aggregates convert to β-rich SI-like aggregates upon 1) seeding with SI-derived aggregates and 2) agitating in SI. We conclude that end-stage MP aggregates were in a kinetically trapped conformation, whose kinetic barrier was bypassed upon either seeding by SI-derived fibrils or shaking in SI. We further show that MP-derived aggregates that form in the presence of sorbitol, an osmolyte, displayed a β-rich signature, indicating that the preferential exclusion effect of osmolytes helped overcome the kinetic barrier. Our findings help in unravelling the kinetic origin of different α-synuclein aggregated polymorphs (strains) that encode diverse variants of synucleinopathies. We demonstrate that kinetic control shapes the polymorphic landscape of α-synuclein aggregates, both through de novo generation of polymorphs, and by their interconversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淀粉样蛋白多态性的动力学控制:不同的搅拌和溶液条件促进不同的α-突触核蛋白淀粉样蛋白多晶型
神经元蛋白α-突触核蛋白的聚集与突触核蛋白疾病有关,包括帕金森病。尽管有大量的体外研究,α-突触核蛋白组装过程的机制仍然模糊不清。在这项工作中,α-突触核蛋白通过两种不同模式的持续混合诱导聚集,无论是在96孔微孔板读数器(MP)中搅拌,还是在使用摇动培养箱(SI)的微量离心管中搅拌。两种模式下的聚集都是通过具有明确滞后、生长和饱和阶段的S型生长模式发生的。通过AFM、蛋白酶-K消化、FTIR、拉曼和CD光谱可以看出,终末期MP和SI衍生的聚集体在形态、生化和光谱特征方面表现出明显差异。MP衍生的聚集体表现出不规则的形态,具有显著的无规卷曲构象,而SI衍生的聚集合表现出典型的β-片状原纤维结构。在1)用SI衍生的聚集体接种和2)在SI中搅拌后,终末期MP聚集体转化为富含β的SI样聚集体,一种渗透液,显示出富含β的特征,表明渗透液的优先排斥作用有助于克服动力学障碍。我们的发现有助于揭示不同α-突触核蛋白聚集多晶型(菌株)的动力学起源,这些多晶型编码突触核蛋白疾病的不同变体。我们证明,动力学控制通过多晶型物的从头产生和它们的相互转化来塑造α-突触核蛋白聚集体的多晶型景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1