Rajeev Pasupuleti , Francesca Rosato , Dajana Kolanovic , Olga N. Makshakova , Winfried Römer , Birgit Wiltschi
{"title":"Genetic code expansion in E. coli enables production of a functional ‘ready-to-click’ T cell receptor-specific scFv","authors":"Rajeev Pasupuleti , Francesca Rosato , Dajana Kolanovic , Olga N. Makshakova , Winfried Römer , Birgit Wiltschi","doi":"10.1016/j.nbt.2023.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Antibody-based cancer therapies have been evolving at a rapid pace in the pharmaceutical market. Bispecific antibody-drug conjugates that engage immune cells to target and kill cancer cells with precision have inspired the development of immunotherapy. Miniaturized antibody fragments such as diabodies, nanobodies, or single-chain variable fragments (scFvs) hold great promise as antibody-drug conjugates as they specifically target tumor tissue and can penetrate it. Here, we optimized the soluble periplasmic expression of the scFv OKT3 comprising the variable V<sub>H</sub> and V<sub>L</sub> domains of the mouse anti-human CD3 antibody muromonab-CD3 (trade name Orthoclone OKT3) in <em>E. coli</em>. By an expansion of the genetic code, we site-specifically incorporated the reactive non-canonical amino acid N<sup>ε</sup>-((2-azidoethoxy)carbonyl)-<span>L</span>-lysine (AzK) into scFv OKT3 using an orthogonal pyrrolysyl-tRNA synthetase/tRNA<sub>CUA</sub> pair. To confirm the AzK incorporation and to demonstrate the accessibility of the reactive azide group, we conjugated a fluorophore to scFv OKT3 AzK variants by copper-free strain-promoted alkyne-azide cycloaddition (‘click chemistry’). The scFv OKT3 wild type and the AzK variants bound T cells at nanomolar concentrations. In this study, a ‘ready-to-click’ scFv OKT3 was successfully developed for future applications, e.g. as controlled anti-T cell antibody-drug conjugate or bispecific T cell engager and for imaging immune T cell migration in cancers.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678423000286","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Antibody-based cancer therapies have been evolving at a rapid pace in the pharmaceutical market. Bispecific antibody-drug conjugates that engage immune cells to target and kill cancer cells with precision have inspired the development of immunotherapy. Miniaturized antibody fragments such as diabodies, nanobodies, or single-chain variable fragments (scFvs) hold great promise as antibody-drug conjugates as they specifically target tumor tissue and can penetrate it. Here, we optimized the soluble periplasmic expression of the scFv OKT3 comprising the variable VH and VL domains of the mouse anti-human CD3 antibody muromonab-CD3 (trade name Orthoclone OKT3) in E. coli. By an expansion of the genetic code, we site-specifically incorporated the reactive non-canonical amino acid Nε-((2-azidoethoxy)carbonyl)-L-lysine (AzK) into scFv OKT3 using an orthogonal pyrrolysyl-tRNA synthetase/tRNACUA pair. To confirm the AzK incorporation and to demonstrate the accessibility of the reactive azide group, we conjugated a fluorophore to scFv OKT3 AzK variants by copper-free strain-promoted alkyne-azide cycloaddition (‘click chemistry’). The scFv OKT3 wild type and the AzK variants bound T cells at nanomolar concentrations. In this study, a ‘ready-to-click’ scFv OKT3 was successfully developed for future applications, e.g. as controlled anti-T cell antibody-drug conjugate or bispecific T cell engager and for imaging immune T cell migration in cancers.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.