{"title":"RoPE: A robust profile likelihood method for differential gene expression analysis","authors":"Lehang Zhong, Lisa J. Strug","doi":"10.1002/gepi.22526","DOIUrl":null,"url":null,"abstract":"<p>Variation in RNA-Seq data creates modeling challenges for differential gene expression (DE) analysis. Statistical approaches address conventional small sample sizes and implement empirical Bayes or non-parametric tests, but frequently produce different conclusions. Increasing sample sizes enable proposal of alternative DE paradigms. Here we develop RoPE, which uses a data-driven adjustment for variation and a robust profile likelihood ratio DE test. Simulation studies show RoPE can have improved performance over existing tools as sample size increases and has the most reliable control of error rates. Application of RoPE demonstrates that an active <i>Pseudomonas aeruginosa</i> infection downregulates the <i>SLC9A3</i> Cystic Fibrosis modifier gene.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 5","pages":"379-393"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22526","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22526","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Variation in RNA-Seq data creates modeling challenges for differential gene expression (DE) analysis. Statistical approaches address conventional small sample sizes and implement empirical Bayes or non-parametric tests, but frequently produce different conclusions. Increasing sample sizes enable proposal of alternative DE paradigms. Here we develop RoPE, which uses a data-driven adjustment for variation and a robust profile likelihood ratio DE test. Simulation studies show RoPE can have improved performance over existing tools as sample size increases and has the most reliable control of error rates. Application of RoPE demonstrates that an active Pseudomonas aeruginosa infection downregulates the SLC9A3 Cystic Fibrosis modifier gene.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.