Jeffrey L Ebersole, Sreenatha Kirakodu, Octovio Gonzalez
{"title":"Differential oral microbiome in nonhuman primates from periodontitis-susceptible and periodontitis-resistant matrilines.","authors":"Jeffrey L Ebersole, Sreenatha Kirakodu, Octovio Gonzalez","doi":"10.1111/omi.12377","DOIUrl":null,"url":null,"abstract":"<p><p>Rhesus monkeys (n = 36) exhibiting a healthy periodontium at baseline were used to induce progressing periodontitis through ligature placement around premolar/molar teeth. Bacterial samples were collected at baseline, 0.5, 1, and 3 months of disease and at 5 months for disease resolution. The animals were distributed into two groups (18/group): 3-7 years (young) and 12-23 years (adult) and stratified based upon matriline susceptibility to periodontitis (PDS, susceptible; PDR, resistant). A total of 444 operational taxonomic units (OTUs) with 100 microbes representing a core microbiome present in ≥75% of the samples were identified. Only 48% of the major phylotypes overlapped in the PDS and PDR samples. Different OTU abundance patterns were seen in young animals from the PDS and PDR matrilines, with qualitative similarities during disease and the relative abundance of phylotypes becoming less diverse. In adults, 23 OTUs were increased during disease in PDS samples and 24 in PDR samples; however, only five were common between these groups. Greater diversity of OTU relative abundance at baseline was observed with adult compared to young oral samples from both the PDS and PDR groups. With disease initiation (2 weeks), less diversity of relative abundance and some distinctive increases in specific OTUs were noted. By 1 month, there was considerable qualitative homogeneity in the major OTUs in both groups; however, by 3 months, there was an exacerbation of both qualitative and quantitative differences in the dominant OTUs between the PDS and PDR samples. These results support that some differences in disease expression related to matriline (familial) periodontitis risk may be explained by microbiome features.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":"38 2","pages":"93-114"},"PeriodicalIF":2.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12377","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 2
Abstract
Rhesus monkeys (n = 36) exhibiting a healthy periodontium at baseline were used to induce progressing periodontitis through ligature placement around premolar/molar teeth. Bacterial samples were collected at baseline, 0.5, 1, and 3 months of disease and at 5 months for disease resolution. The animals were distributed into two groups (18/group): 3-7 years (young) and 12-23 years (adult) and stratified based upon matriline susceptibility to periodontitis (PDS, susceptible; PDR, resistant). A total of 444 operational taxonomic units (OTUs) with 100 microbes representing a core microbiome present in ≥75% of the samples were identified. Only 48% of the major phylotypes overlapped in the PDS and PDR samples. Different OTU abundance patterns were seen in young animals from the PDS and PDR matrilines, with qualitative similarities during disease and the relative abundance of phylotypes becoming less diverse. In adults, 23 OTUs were increased during disease in PDS samples and 24 in PDR samples; however, only five were common between these groups. Greater diversity of OTU relative abundance at baseline was observed with adult compared to young oral samples from both the PDS and PDR groups. With disease initiation (2 weeks), less diversity of relative abundance and some distinctive increases in specific OTUs were noted. By 1 month, there was considerable qualitative homogeneity in the major OTUs in both groups; however, by 3 months, there was an exacerbation of both qualitative and quantitative differences in the dominant OTUs between the PDS and PDR samples. These results support that some differences in disease expression related to matriline (familial) periodontitis risk may be explained by microbiome features.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.