Fungi as a source of eumelanin: current understanding and prospects.

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Industrial Microbiology & Biotechnology Pub Date : 2023-02-17 DOI:10.1093/jimb/kuad014
William Beeson, Kyle Gabriel, Christopher Cornelison
{"title":"Fungi as a source of eumelanin: current understanding and prospects.","authors":"William Beeson, Kyle Gabriel, Christopher Cornelison","doi":"10.1093/jimb/kuad014","DOIUrl":null,"url":null,"abstract":"<p><p>Melanins represent a diverse collection of pigments with a variety of structures and functions. One class of melanin, eumelanin, is recognizable to most as the source of the dark black color found in cephalopod ink. Sepia officinalis is the most well-known and sought-after source of non-synthetic eumelanin, but its harvest is limited by the availability of cuttlefish, and its extraction from an animal source brings rise to ethical concerns. In recent years, these limitations have become more pressing as more applications for eumelanin are developed-particularly in medicine and electronics. This surge in interest in the applications of eumelanin has also fueled a rise in the interest of alternative, bio-catalyzed production methods. Many culinarily-utilized fungi are ideal candidates in this production scheme, as examples exist which have been shown to produce eumelanin, their growth at large scales is well understood, and they can be cultivated on recaptured waste streams. However, much of the current research on the fungal production of eumelanin focuses on pathogenic fungi and eumelanin's role in virulence. In this paper, we will review the potential for culinary fungi to produce eumelanin and provide suggestions for new research areas that would be most impactful in the search for improved fungal eumelanin producers.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/44/2f/kuad014.PMC10569377.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuad014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Melanins represent a diverse collection of pigments with a variety of structures and functions. One class of melanin, eumelanin, is recognizable to most as the source of the dark black color found in cephalopod ink. Sepia officinalis is the most well-known and sought-after source of non-synthetic eumelanin, but its harvest is limited by the availability of cuttlefish, and its extraction from an animal source brings rise to ethical concerns. In recent years, these limitations have become more pressing as more applications for eumelanin are developed-particularly in medicine and electronics. This surge in interest in the applications of eumelanin has also fueled a rise in the interest of alternative, bio-catalyzed production methods. Many culinarily-utilized fungi are ideal candidates in this production scheme, as examples exist which have been shown to produce eumelanin, their growth at large scales is well understood, and they can be cultivated on recaptured waste streams. However, much of the current research on the fungal production of eumelanin focuses on pathogenic fungi and eumelanin's role in virulence. In this paper, we will review the potential for culinary fungi to produce eumelanin and provide suggestions for new research areas that would be most impactful in the search for improved fungal eumelanin producers.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真菌作为真黑色素的来源:目前的认识和展望。
黑色素是一组具有多种结构和功能的色素。黑色素中的一类,真黑色素,被大多数人认为是头足类动物墨水中黑色的来源。Sepia officinalis是最知名和最受欢迎的非合成真黑色素来源,但其收获受到墨鱼供应的限制,从动物来源提取的Sepia offensinalis引起了伦理问题。近年来,随着真黑色素在医学和电子领域的应用越来越多,这些限制变得更加紧迫。人们对真黑色素应用的兴趣激增,也推动了人们对替代生物催化生产方法的兴趣上升。在这种生产方案中,许多被广泛利用的真菌是理想的候选者,因为已经有例子表明它们可以产生真黑色素,它们的大规模生长是众所周知的,并且它们可以在回收的废物流中培养。然而,目前关于真黑色素真菌产生的研究大多集中在病原真菌和真黑色素在毒力中的作用上。在这篇论文中,我们将回顾烹饪真菌产生真黑色素的潜力,并为新的研究领域提供建议,这些领域将对寻找改良的真菌真黑色素生产商产生最大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
期刊最新文献
Use of qPCR to Monitor 2,4-Dinitroanisole Degrading Bacteria in Water and Soil Slurry Cultures. Enhancing the erythritol production of Yarrowia lipolytica by high-throughput screening based on highly sensitive artificial sensor and anchor protein cwp2. Characterization of the exopolysaccharides produced by the industrial yeast Komagataella phaffii. A synthetic co-culture for bioproduction of ammonia from methane and air. Valorizing Waste Streams to Enhance Sustainability and Economics in Microbial Oil Production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1