Xiaoyu Peng, Jordan L Hickman, Spencer G Bowles, Dane C Donegan, Cristin G Welle
{"title":"Innovations in electrical stimulation harness neural plasticity to restore motor function.","authors":"Xiaoyu Peng, Jordan L Hickman, Spencer G Bowles, Dane C Donegan, Cristin G Welle","doi":"10.2217/bem-2019-0002","DOIUrl":null,"url":null,"abstract":"<p><p>Novel technology and innovative stimulation paradigms allow for unprecedented spatiotemporal precision and closed-loop implementation of neurostimulation systems. In turn, precise, closed-loop neurostimulation appears to preferentially drive neural plasticity in motor networks, promoting neural repair. Recent clinical studies demonstrate that electrical stimulation can drive neural plasticity in damaged motor circuits, leading to meaningful improvement in users. Future advances in these areas hold promise for the treatment of a wide range of motor systems disorders.</p>","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":"1 4","pages":"251-263"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046169/pdf/nihms-1048067.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/bem-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Novel technology and innovative stimulation paradigms allow for unprecedented spatiotemporal precision and closed-loop implementation of neurostimulation systems. In turn, precise, closed-loop neurostimulation appears to preferentially drive neural plasticity in motor networks, promoting neural repair. Recent clinical studies demonstrate that electrical stimulation can drive neural plasticity in damaged motor circuits, leading to meaningful improvement in users. Future advances in these areas hold promise for the treatment of a wide range of motor systems disorders.