Optimization of Extracellular Vesicle Release for Targeted Drug Delivery

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2023-06-19 DOI:10.1109/TNB.2023.3287637
Martin Damrath;Mladen Veletić;Hamid Khoshfekr Rudsari;Ilangko Balasingham
{"title":"Optimization of Extracellular Vesicle Release for Targeted Drug Delivery","authors":"Martin Damrath;Mladen Veletić;Hamid Khoshfekr Rudsari;Ilangko Balasingham","doi":"10.1109/TNB.2023.3287637","DOIUrl":null,"url":null,"abstract":"Targeted drug delivery is a promising approach for many serious diseases, such as glioblastoma multiforme, one of the most common and devastating brain tumor. In this context, this work addresses the optimization of the controlled release of drugs which are carried by extracellular vesicles. Towards this goal, we derive and numerically verify an analytical solution for the end-to-end system model. We then apply the analytical solution either to reduce the disease treatment time or to reduce the amount of required drugs. The latter is formulated as a bilevel optimization problem, whose quasiconvex/quasiconcave property is proved here. For solving the optimization problem, we propose and utilize a combination of bisection method and golden-section search. The numerical results demonstrate that the optimization can significantly reduce the treatment time and/or the required drugs carried by extracellular vesicles for a therapy compared to the steady state solution.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 1","pages":"109-117"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10155477/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted drug delivery is a promising approach for many serious diseases, such as glioblastoma multiforme, one of the most common and devastating brain tumor. In this context, this work addresses the optimization of the controlled release of drugs which are carried by extracellular vesicles. Towards this goal, we derive and numerically verify an analytical solution for the end-to-end system model. We then apply the analytical solution either to reduce the disease treatment time or to reduce the amount of required drugs. The latter is formulated as a bilevel optimization problem, whose quasiconvex/quasiconcave property is proved here. For solving the optimization problem, we propose and utilize a combination of bisection method and golden-section search. The numerical results demonstrate that the optimization can significantly reduce the treatment time and/or the required drugs carried by extracellular vesicles for a therapy compared to the steady state solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化细胞外囊泡释放,实现靶向给药。
靶向给药是治疗许多严重疾病(如多形性胶质母细胞瘤,一种最常见、最具破坏性的脑肿瘤)的一种前景广阔的方法。在此背景下,本研究致力于优化由细胞外囊泡携带的药物的控制释放。为此,我们推导出端到端系统模型的解析解,并进行了数值验证。然后,我们应用分析解来缩短疾病治疗时间或减少所需药物量。后者被表述为一个双层优化问题,其准凸/准凹特性在此得到了证明。为解决该优化问题,我们提出并使用了分段法和黄金分割搜索相结合的方法。数值结果表明,与稳态方案相比,优化方案能显著缩短治疗时间和/或减少治疗所需的细胞外囊泡携带的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. "Galaxy" encoding: toward high storage density and low cost. 2024 Index IEEE Transactions on NanoBioscience Vol. 23 Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1