Evaluation of functional kompetitive allele-specific PCR (KASP) markers for selection of drought-tolerant wheat (Triticum aestivum) genotypes.

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-01-01 DOI:10.1071/FP23032
Marya Rubab, Summiya Jannat, Haytham Freeg, Hina Abbas, Kotb A Attia, Sajid Fiaz, Nageen Zahra, Muhammad Uzair, Safeena Inam, Asad Hussain Shah, Itoh Kimiko, Muhammad Kashif Naeem, Muhammad Ramzan Khan
{"title":"Evaluation of functional kompetitive allele-specific PCR (KASP) markers for selection of drought-tolerant wheat (<i>Triticum aestivum</i>) genotypes.","authors":"Marya Rubab, Summiya Jannat, Haytham Freeg, Hina Abbas, Kotb A Attia, Sajid Fiaz, Nageen Zahra, Muhammad Uzair, Safeena Inam, Asad Hussain Shah, Itoh Kimiko, Muhammad Kashif Naeem, Muhammad Ramzan Khan","doi":"10.1071/FP23032","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat (Triticum aestivum ) is a major crop around the globe and different techniques are being used for its productivity enhancement. Germplasm evaluation to improve crop productivity mainly depends on accurate phenotyping and selection of genotypes with a high frequency of superior alleles related to the trait of interest. Therefore, applying functional kompetitive allele-specific PCR (KASP) markers for drought-related genes is essential to characterise the genotypes for developing future climate-resilient wheat crop. In this study, eight functional KASP markers and nine morphological traits were employed to evaluate the 40 wheat genotypes for drought tolerance. Morphological traits showed significant variation (P ≤0.05) among the genotypes, except tiller count (TC), fresh root weight (FRW) and dry root weight (DRW). PCA biplot showed that 63.3% phenotypic variation was explained by the first two PCs under control treatment, while 70.8% variation was explained under drought treatment. It also indicated that root length (RL) and primary root (PR) have considerable variations among the genotypes under both treatments and are positively associated with each other. Hence, the findings of this study suggested that both these traits could be used as a selection criterion to classify the drought-tolerant wheat genotypes. KASP genotyping accompanied by morphological data revealed that genotypes Markaz, Bhakar Star, China 2, Aas and Chakwal-50 performed better under drought stress. These outperforming genotypes could be used as parents in developing drought-tolerant wheat genotypes. Hence, KASP genotyping assay for functional genes or significant haplotypes and phenotypic evaluation are prerequisites for a modern breeding program.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat (Triticum aestivum ) is a major crop around the globe and different techniques are being used for its productivity enhancement. Germplasm evaluation to improve crop productivity mainly depends on accurate phenotyping and selection of genotypes with a high frequency of superior alleles related to the trait of interest. Therefore, applying functional kompetitive allele-specific PCR (KASP) markers for drought-related genes is essential to characterise the genotypes for developing future climate-resilient wheat crop. In this study, eight functional KASP markers and nine morphological traits were employed to evaluate the 40 wheat genotypes for drought tolerance. Morphological traits showed significant variation (P ≤0.05) among the genotypes, except tiller count (TC), fresh root weight (FRW) and dry root weight (DRW). PCA biplot showed that 63.3% phenotypic variation was explained by the first two PCs under control treatment, while 70.8% variation was explained under drought treatment. It also indicated that root length (RL) and primary root (PR) have considerable variations among the genotypes under both treatments and are positively associated with each other. Hence, the findings of this study suggested that both these traits could be used as a selection criterion to classify the drought-tolerant wheat genotypes. KASP genotyping accompanied by morphological data revealed that genotypes Markaz, Bhakar Star, China 2, Aas and Chakwal-50 performed better under drought stress. These outperforming genotypes could be used as parents in developing drought-tolerant wheat genotypes. Hence, KASP genotyping assay for functional genes or significant haplotypes and phenotypic evaluation are prerequisites for a modern breeding program.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估用于筛选耐旱小麦(Triticum aestivum)基因型的功能性等位基因特异性 PCR(KASP)标记。
小麦(Triticum aestivum)是全球的主要作物,目前正在使用不同的技术来提高其产量。提高作物产量的种质评估主要依赖于准确的表型分析,以及选择与相关性状相关的高频率优良等位基因的基因型。因此,针对干旱相关基因应用功能性等位基因特异性 PCR(KASP)标记对于鉴定基因型以开发未来气候适应性强的小麦作物至关重要。本研究采用了 8 个功能性 KASP 标记和 9 个形态学性状来评估 40 个小麦基因型的抗旱性。除分蘖数(TC)、鲜根重(FRW)和干根重(DRW)外,其他形态性状在不同基因型之间存在显著差异(P≤0.05)。PCA 双平面图显示,在对照处理下,63.3%的表型变异由前两个 PCs 解释,而在干旱处理下,70.8%的变异由前两个 PCs 解释。研究还表明,在两种处理下,不同基因型的根长(RL)和主根(PR)有相当大的差异,并且相互之间呈正相关。因此,本研究结果表明,这两个性状可作为筛选标准来划分耐旱小麦基因型。KASP 基因分型和形态学数据显示,基因型 Markaz、Bhakar Star、中国 2 号、Aas 和 Chakwal-50 在干旱胁迫下表现较好。这些表现较好的基因型可作为亲本用于开发耐旱小麦基因型。因此,对功能基因或重要单倍型进行 KASP 基因分型检测和表型评估是现代育种计划的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Glycoside hydrolases reveals their differential role in response to drought and salt stress in potato (Solanum tuberosum) Coordination between water relations strategy and carbon investment in leaf and stem in six fruit tree species. Genome editing for improvement of biotic and abiotic stress tolerance in cereals. Investigating the combined effects of β-sitosterol and biochar on nutritional value and drought tolerance in Phaseolus vulgaris under drought stress. Augmenting the basis of lodging tolerance in wheat (Triticum aestivum) under natural and simulated conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1