Machine annealing-guided navigation of antihypertensive food peptide selectivity between human ACE N- and C-domains in structurally interacting diversity space
Li Mei, Shuyong Shang, Shaozhou Wang, Haiyang Ye, Peng Zhou
{"title":"Machine annealing-guided navigation of antihypertensive food peptide selectivity between human ACE N- and C-domains in structurally interacting diversity space","authors":"Li Mei, Shuyong Shang, Shaozhou Wang, Haiyang Ye, Peng Zhou","doi":"10.1002/jmr.3014","DOIUrl":null,"url":null,"abstract":"<p>Human angiotensin-converting enzyme (ACE) is a well-established druggable target for the treatment of hypertension (HTN), which contains two structurally homologous but functionally distinct N- and C-domains. Selective inhibition of the C-domain primarily contributes to the antihypertensive efficiency and can be exploited as medicinal agents and functional additives for regulating blood pressure with high safety. In this study, we used a machine annealing (MA) strategy to guide the navigation of antihypertensive peptides (AHPs) in structurally interacting diversity space with the two ACE domains based on their crystal/modeled complex structures and an in-house protein-peptide affinity scoring function, aiming to optimize the peptide selectivity for C-domain over N-domain. The strategy generated a panel of theoretically designed AHP hits with a satisfactory C-over-N (C > N) selectivity profile, from which several hits were found to have a good C > N selectivity, which is roughly comparable with or even better than the BPPb, a natural C > N-selective ACE-inhibitory peptide. Structural analysis and comparison of domain-peptide noncovalent interaction patterns revealed that (i) longer peptides (>4 amino aids) generally exhibit stronger selectivity than shorter peptides (<4 amino aids), (ii) peptide sequence can be divided into two, section I (including peptide C-terminal region) and section II (including peptide middle and N-terminal regions); the former contributes to both peptide affinity (primarily) and selectivity (secondarily), while the latter is almost only responsible for peptide selectivity, and (iii) charged/polar amino acids confer to peptide selectivity relative to hydrophobic/nonpolar amino acids (that confer to peptide affinity).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7
Abstract
Human angiotensin-converting enzyme (ACE) is a well-established druggable target for the treatment of hypertension (HTN), which contains two structurally homologous but functionally distinct N- and C-domains. Selective inhibition of the C-domain primarily contributes to the antihypertensive efficiency and can be exploited as medicinal agents and functional additives for regulating blood pressure with high safety. In this study, we used a machine annealing (MA) strategy to guide the navigation of antihypertensive peptides (AHPs) in structurally interacting diversity space with the two ACE domains based on their crystal/modeled complex structures and an in-house protein-peptide affinity scoring function, aiming to optimize the peptide selectivity for C-domain over N-domain. The strategy generated a panel of theoretically designed AHP hits with a satisfactory C-over-N (C > N) selectivity profile, from which several hits were found to have a good C > N selectivity, which is roughly comparable with or even better than the BPPb, a natural C > N-selective ACE-inhibitory peptide. Structural analysis and comparison of domain-peptide noncovalent interaction patterns revealed that (i) longer peptides (>4 amino aids) generally exhibit stronger selectivity than shorter peptides (<4 amino aids), (ii) peptide sequence can be divided into two, section I (including peptide C-terminal region) and section II (including peptide middle and N-terminal regions); the former contributes to both peptide affinity (primarily) and selectivity (secondarily), while the latter is almost only responsible for peptide selectivity, and (iii) charged/polar amino acids confer to peptide selectivity relative to hydrophobic/nonpolar amino acids (that confer to peptide affinity).