Tandem Triplication 11p15.5-ICR1 (H19/IGF2) Detected by Microarray and Optical Genome Mapping in a Prenatal Beckwith-Wiedemann Case.

IF 1.7 4区 生物学 Q4 CELL BIOLOGY Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-06-27 DOI:10.1159/000531703
Elisabet Lloveras, Cristina Pérez, Begoña Mendez, Susana Martin, Claudia Alves, Margarida Reis-Lima
{"title":"Tandem Triplication 11p15.5-ICR1 (H19/IGF2) Detected by Microarray and Optical Genome Mapping in a Prenatal Beckwith-Wiedemann Case.","authors":"Elisabet Lloveras, Cristina Pérez, Begoña Mendez, Susana Martin, Claudia Alves, Margarida Reis-Lima","doi":"10.1159/000531703","DOIUrl":null,"url":null,"abstract":"<p><p>Optical genome mapping (OGM) appears as a new tool for matching standard cytogenetic methods (karyotype and microarray) into a single assay. The chromosomal region 11p15.5 harbours two differentially methylated regions, the imprinting centre regions 1 and 2 (ICR1, ICR2). Disturbances in both regions alter human growth and are associated with two imprinting disorders, Beckwith-Wiedemann (BWS) and Silver-Russell syndromes. Herein, we present a prenatal case with a triplication in 11p15.5, including the H19/IGF2 imprinted region, detected by microarray and OGM. A 30-year-old pregnant woman of 17 weeks of gestation was referred for prenatal karyotype and microarray study because of increased nuchal translucency, short femur, megabladder, hyperechogenic bowel, and renal ectasia. Microarray, OGM, and MS-MLPA were performed, and a tandem cis-triplication in 11p15.5 and hypermethylation of the ICR1 region, compatible with BWS was detected. OGM, with its power to detect all classes of structural variants, including copy number variants, at a higher resolution than traditional cytogenetic methods can play a significant role in prenatal care and management as a next-generation cytogenomic tool. This study further supports the hypotheses that the amplification/duplication-triplication of the H19/IGF2 region could be related to BWS if it is of paternal origin.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000531703","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical genome mapping (OGM) appears as a new tool for matching standard cytogenetic methods (karyotype and microarray) into a single assay. The chromosomal region 11p15.5 harbours two differentially methylated regions, the imprinting centre regions 1 and 2 (ICR1, ICR2). Disturbances in both regions alter human growth and are associated with two imprinting disorders, Beckwith-Wiedemann (BWS) and Silver-Russell syndromes. Herein, we present a prenatal case with a triplication in 11p15.5, including the H19/IGF2 imprinted region, detected by microarray and OGM. A 30-year-old pregnant woman of 17 weeks of gestation was referred for prenatal karyotype and microarray study because of increased nuchal translucency, short femur, megabladder, hyperechogenic bowel, and renal ectasia. Microarray, OGM, and MS-MLPA were performed, and a tandem cis-triplication in 11p15.5 and hypermethylation of the ICR1 region, compatible with BWS was detected. OGM, with its power to detect all classes of structural variants, including copy number variants, at a higher resolution than traditional cytogenetic methods can play a significant role in prenatal care and management as a next-generation cytogenomic tool. This study further supports the hypotheses that the amplification/duplication-triplication of the H19/IGF2 region could be related to BWS if it is of paternal origin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微阵列和光学基因组定位检测产前beckwithwiedemann病例串联三倍体11p15.5-ICR1 (H19/IGF2)
光学基因组作图(OGM)是一种将标准细胞遗传学方法(核型和微阵列)与单一分析相匹配的新工具。11p15.5染色体区域包含两个不同的甲基化区域,印迹中心区域1和2 (ICR1, ICR2)。这两个区域的紊乱会改变人类的生长,并与两种印记障碍(Beckwith-Wiedemann, BWS)和Silver-Russell综合征)有关。在这里,我们提出了一个产前病例11p15.5的三倍,包括H19/IGF2印迹区,通过微阵列和OGM检测。一例妊娠17周的30岁孕妇,由于颈部半透明增加,股骨短,巨型阶梯,肠高回声和肾扩张,被转介产前核型和微阵列研究。通过微阵列、OGM和MS-MLPA检测到11p15.5的串联顺式三倍扩增和ICR1区域的高甲基化,与BWS兼容。与传统的细胞遗传学方法相比,OGM能够以更高的分辨率检测所有类型的结构变异,包括拷贝数变异,可以作为下一代细胞基因组学工具在产前护理和管理中发挥重要作用。本研究进一步支持了H19/IGF2区域的扩增/重复-三倍可能与BWS有关的假设,如果它是父系起源的话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytogenetic and Genome Research
Cytogenetic and Genome Research 生物-细胞生物学
CiteScore
3.10
自引率
5.90%
发文量
25
审稿时长
1 months
期刊介绍: During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.
期刊最新文献
Novel 10q21.1-q22.1 duplication in a boy with minor facial dysmorphism, mild intellectual disability, autism spectrum disorder -like phenotype, and short stature. Dosage effect of the Ph1 locus on homologous crossovers in a segment of chromosome 1B of bread wheat, Triticum aestivum L. Clinical Findings in a Series of Thirty Eight Patients with Williams-Beuren Syndrome. Prenatal Diagnosis of Fetuses with 4q35 Deletion: Case Series and Review of the Literature. In silico Characterization of Satellitomes and Cross-Amplification of Putative satDNAs in Two Species of the Hypostomus ancistroides Complex (Siluriformes, Loricariidae).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1