Molecular logic for cellular specializations that initiate the auditory parallel processing pathways.

Junzhan Jing, Ming Hu, Tenzin Ngodup, Qianqian Ma, Shu Ning Natalie Lau, Cecilia Ljungberg, Matthew J McGinley, Laurence O Trussell, Xiaolong Jiang
{"title":"Molecular logic for cellular specializations that initiate the auditory parallel processing pathways.","authors":"Junzhan Jing, Ming Hu, Tenzin Ngodup, Qianqian Ma, Shu Ning Natalie Lau, Cecilia Ljungberg, Matthew J McGinley, Laurence O Trussell, Xiaolong Jiang","doi":"10.1101/2023.05.15.539065","DOIUrl":null,"url":null,"abstract":"<p><p>The cochlear nuclear complex (CN), the starting point for all central auditory processing, comprises a suite of neuronal cell types that are highly specialized for neural coding of acoustic signals, yet molecular logic governing cellular specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple new subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the remarkable cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level illustrates molecular logic for cellular specializations and enables genetic dissection of auditory processing and hearing disorders with unprecedented specificity.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7d/eb/nihpp-2023.05.15.539065v3.PMC10245571.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.15.539065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cochlear nuclear complex (CN), the starting point for all central auditory processing, comprises a suite of neuronal cell types that are highly specialized for neural coding of acoustic signals, yet molecular logic governing cellular specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple new subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the remarkable cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level illustrates molecular logic for cellular specializations and enables genetic dissection of auditory processing and hearing disorders with unprecedented specificity.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
启动小鼠平行听觉处理通路的细胞特化的综合分析。
耳蜗核复合体(CN)是大脑中所有听觉处理的起点,它包括一套高度专门用于声学信号神经编码的神经元细胞类型。为了研究它们惊人的功能特异性是如何在分子水平上确定的,我们对小鼠CN进行了单核RNA测序,以从分子上定义所有组成细胞类型,然后使用Patch-seq将它们与形态学和电生理学定义的神经元相关联。我们揭示了一组扩展的分子CN细胞类型,包括所有先前描述的主要类型,并在地形和细胞生理特性方面发现了新的亚型。我们的结果定义了CN中一个完整的细胞类型分类,该分类符合解剖位置、形态学、生理学和分子标准。这种对细胞异质性和从分子到电路水平的专门化的高分辨率描述,现在能够以前所未有的特异性对听觉处理和听力障碍进行基因解剖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gradual transition toward categorical representations along the visual hierarchy during working memory, but not perception. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Bifurcation enhances temporal information encoding in the olfactory periphery. Localized synthesis of molecular chaperones sustains neuronal proteostasis. Basolateral amygdala oscillations enable fear learning in a biophysical model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1