The Misinformation Susceptibility Test (MIST): A psychometrically validated measure of news veracity discernment.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2024-03-01 Epub Date: 2023-06-29 DOI:10.3758/s13428-023-02124-2
Rakoen Maertens, Friedrich M Götz, Hudson F Golino, Jon Roozenbeek, Claudia R Schneider, Yara Kyrychenko, John R Kerr, Stefan Stieger, William P McClanahan, Karly Drabot, James He, Sander van der Linden
{"title":"The Misinformation Susceptibility Test (MIST): A psychometrically validated measure of news veracity discernment.","authors":"Rakoen Maertens, Friedrich M Götz, Hudson F Golino, Jon Roozenbeek, Claudia R Schneider, Yara Kyrychenko, John R Kerr, Stefan Stieger, William P McClanahan, Karly Drabot, James He, Sander van der Linden","doi":"10.3758/s13428-023-02124-2","DOIUrl":null,"url":null,"abstract":"<p><p>Interest in the psychology of misinformation has exploded in recent years. Despite ample research, to date there is no validated framework to measure misinformation susceptibility. Therefore, we introduce Verification done, a nuanced interpretation schema and assessment tool that simultaneously considers Veracity discernment, and its distinct, measurable abilities (real/fake news detection), and biases (distrust/naïvité-negative/positive judgment bias). We then conduct three studies with seven independent samples (N<sub>total</sub> = 8504) to show how to develop, validate, and apply the Misinformation Susceptibility Test (MIST). In Study 1 (N = 409) we use a neural network language model to generate items, and use three psychometric methods-factor analysis, item response theory, and exploratory graph analysis-to create the MIST-20 (20 items; completion time < 2 minutes), the MIST-16 (16 items; < 2 minutes), and the MIST-8 (8 items; < 1 minute). In Study 2 (N = 7674) we confirm the internal and predictive validity of the MIST in five national quota samples (US, UK), across 2 years, from three different sampling platforms-Respondi, CloudResearch, and Prolific. We also explore the MIST's nomological net and generate age-, region-, and country-specific norm tables. In Study 3 (N = 421) we demonstrate how the MIST-in conjunction with Verification done-can provide novel insights on existing psychological interventions, thereby advancing theory development. Finally, we outline the versatile implementations of the MIST as a screening tool, covariate, and intervention evaluation framework. As all methods are transparently reported and detailed, this work will allow other researchers to create similar scales or adapt them for any population of interest.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"1863-1899"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-023-02124-2","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interest in the psychology of misinformation has exploded in recent years. Despite ample research, to date there is no validated framework to measure misinformation susceptibility. Therefore, we introduce Verification done, a nuanced interpretation schema and assessment tool that simultaneously considers Veracity discernment, and its distinct, measurable abilities (real/fake news detection), and biases (distrust/naïvité-negative/positive judgment bias). We then conduct three studies with seven independent samples (Ntotal = 8504) to show how to develop, validate, and apply the Misinformation Susceptibility Test (MIST). In Study 1 (N = 409) we use a neural network language model to generate items, and use three psychometric methods-factor analysis, item response theory, and exploratory graph analysis-to create the MIST-20 (20 items; completion time < 2 minutes), the MIST-16 (16 items; < 2 minutes), and the MIST-8 (8 items; < 1 minute). In Study 2 (N = 7674) we confirm the internal and predictive validity of the MIST in five national quota samples (US, UK), across 2 years, from three different sampling platforms-Respondi, CloudResearch, and Prolific. We also explore the MIST's nomological net and generate age-, region-, and country-specific norm tables. In Study 3 (N = 421) we demonstrate how the MIST-in conjunction with Verification done-can provide novel insights on existing psychological interventions, thereby advancing theory development. Finally, we outline the versatile implementations of the MIST as a screening tool, covariate, and intervention evaluation framework. As all methods are transparently reported and detailed, this work will allow other researchers to create similar scales or adapt them for any population of interest.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
错误信息易感性测试 (MIST):经心理测量验证的新闻真实性辨别度量。
近年来,人们对虚假信息心理学的兴趣呈爆炸式增长。尽管有大量的研究,但迄今为止还没有一个有效的框架来衡量错误信息的易感性。因此,我们引入了 "验证"(Verification done)这一细致入微的解释模式和评估工具,它同时考虑了 "真实性 "辨别力及其独特的、可测量的能力(真实/虚假新闻检测)和偏差(不信任/天真-消极/积极判断偏差)。然后,我们对七个独立样本(总人数 = 8504)进行了三项研究,以展示如何开发、验证和应用错误信息易感性测试(MIST)。在研究 1(N = 409)中,我们使用神经网络语言模型生成项目,并使用三种心理测量方法--因子分析、项目反应理论和探索性图形分析--创建了 MIST-20(20 个项目;完成时间为 10 分钟)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
Dissecting the components of error in analogue report tasks. A template and tutorial for preregistering studies using passive smartphone measures. Scoring story recall for individual differences research: Central details, peripheral details, and automated scoring. A tutorial: Analyzing eye and head movements in virtual reality. Behavioral science labs: How to solve the multi-user problem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1