Regression discontinuity designs in a latent variable framework.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2023-06-01 DOI:10.1037/met0000453
James Soland, Angela Johnson, Eli Talbert
{"title":"Regression discontinuity designs in a latent variable framework.","authors":"James Soland,&nbsp;Angela Johnson,&nbsp;Eli Talbert","doi":"10.1037/met0000453","DOIUrl":null,"url":null,"abstract":"<p><p>When randomized control trials are not available, regression discontinuity (RD) designs are a viable quasi-experimental method shown to be capable of producing causal estimates of how a program or intervention affects an outcome. While the RD design and many related methodological innovations came from the field of psychology, RDs are underutilized among psychologists even though many interventions are assigned on the basis of scores from common psychological measures, a situation tailor-made for RDs. In this tutorial, we present a straightforward way to implement an RD model as a structural equation model (SEM). By using SEM, we both situate RDs within a method commonly used in psychology, as well as show how RDs can be implemented in a way that allows one to account for measurement error and avoid measurement model misspecification, both of which often affect psychological measures. We begin with brief Monte Carlo simulation studies to examine the potential benefits of using a latent variable RD model, then transition to an applied example, replete with code and results. The aim of the study is to introduce RD to a broader audience in psychology, as well as show researchers already familiar with RD how employing an SEM framework can be beneficial. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"28 3","pages":"691-704"},"PeriodicalIF":7.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000453","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

When randomized control trials are not available, regression discontinuity (RD) designs are a viable quasi-experimental method shown to be capable of producing causal estimates of how a program or intervention affects an outcome. While the RD design and many related methodological innovations came from the field of psychology, RDs are underutilized among psychologists even though many interventions are assigned on the basis of scores from common psychological measures, a situation tailor-made for RDs. In this tutorial, we present a straightforward way to implement an RD model as a structural equation model (SEM). By using SEM, we both situate RDs within a method commonly used in psychology, as well as show how RDs can be implemented in a way that allows one to account for measurement error and avoid measurement model misspecification, both of which often affect psychological measures. We begin with brief Monte Carlo simulation studies to examine the potential benefits of using a latent variable RD model, then transition to an applied example, replete with code and results. The aim of the study is to introduce RD to a broader audience in psychology, as well as show researchers already familiar with RD how employing an SEM framework can be beneficial. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潜在变量框架下的回归不连续设计。
在没有随机对照试验的情况下,回归不连续(RD)设计是一种可行的准实验方法,能够对项目或干预如何影响结果产生因果估计。虽然RD设计和许多相关的方法创新来自心理学领域,但RD在心理学家中没有得到充分利用,尽管许多干预措施是根据普通心理测量的分数分配的,这是为RD量身定制的情况。在本教程中,我们提出了一种将RD模型实现为结构方程模型(SEM)的直接方法。通过使用SEM,我们将rd置于心理学中常用的方法中,并展示了如何以一种允许人们解释测量误差并避免测量模型错误规范的方式实施rd,这两种方法都经常影响心理学测量。我们从简短的蒙特卡罗模拟研究开始,以检查使用潜在变量RD模型的潜在好处,然后过渡到一个应用示例,其中包含代码和结果。这项研究的目的是向更广泛的心理学受众介绍RD,并向已经熟悉RD的研究人员展示使用SEM框架是如何有益的。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. Item response theory-based continuous test norming. Comments on the measurement of effect sizes for indirect effects in Bayesian analysis of variance. Lagged multidimensional recurrence quantification analysis for determining leader-follower relationships within multidimensional time series. The potential of preregistration in psychology: Assessing preregistration producibility and preregistration-study consistency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1