{"title":"Chromosome instability-associated prognostic signature and cluster investigation for cutaneous melanoma cases","authors":"Ning Liu, Guangjing Liu, Qian Ma, Xiaobing Li","doi":"10.1049/syb2.12064","DOIUrl":null,"url":null,"abstract":"<p>Chromosomal instability (CIN) is closely associated to the early detection of several clinical tumours. In this study, the authors first established a novel prognostic model of melanoma using the hub genes of CIN, based on the datasets of The cancer genome atlas-skin cutaneous melanoma (TCGA-SKCM) and GSE65904 cohorts. Based on the risk scores of our model, the disease-specific survival (DSS) prognosis was worse in the high-risk group. Combining risk score, stage, age, ulceration, and clark factors, a Nomogram was generated to predict 1, 3, 5-year survival rates, which indicated a good clinical validity. Our finding also showed a correlation between high/low risk and tumour infiltration levels of ‘activated CD8 T cells’ and ‘effector memory CD8 T cells’. Moreover, the authors first performed a CIN-based tumour clustering analysis using TCGA-SKCM cases, and identified two melanoma clusters, which exhibit the distinct DSS prognosis and the tumour-infiltrating levels of CD8 T cells. Taken together, a promising CIN-related prognostic signature and clustering for melanoma cases were first established in our study.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"17 3","pages":"121-130"},"PeriodicalIF":1.9000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cb/34/SYB2-17-121.PMC10280610.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12064","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Chromosomal instability (CIN) is closely associated to the early detection of several clinical tumours. In this study, the authors first established a novel prognostic model of melanoma using the hub genes of CIN, based on the datasets of The cancer genome atlas-skin cutaneous melanoma (TCGA-SKCM) and GSE65904 cohorts. Based on the risk scores of our model, the disease-specific survival (DSS) prognosis was worse in the high-risk group. Combining risk score, stage, age, ulceration, and clark factors, a Nomogram was generated to predict 1, 3, 5-year survival rates, which indicated a good clinical validity. Our finding also showed a correlation between high/low risk and tumour infiltration levels of ‘activated CD8 T cells’ and ‘effector memory CD8 T cells’. Moreover, the authors first performed a CIN-based tumour clustering analysis using TCGA-SKCM cases, and identified two melanoma clusters, which exhibit the distinct DSS prognosis and the tumour-infiltrating levels of CD8 T cells. Taken together, a promising CIN-related prognostic signature and clustering for melanoma cases were first established in our study.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.