Corey J Cochrane, Neil Murphy, Carol A Raymond, John B Biersteker, Katherine Dang, Xianzhe Jia, Haje Korth, Pablo Narvaez, Jodie B Ream, Benjamin P Weiss
{"title":"Magnetic Field Modeling and Visualization of the Europa Clipper Spacecraft.","authors":"Corey J Cochrane, Neil Murphy, Carol A Raymond, John B Biersteker, Katherine Dang, Xianzhe Jia, Haje Korth, Pablo Narvaez, Jodie B Ream, Benjamin P Weiss","doi":"10.1007/s11214-023-00974-y","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of NASA's Europa Clipper Mission is to investigate the habitability of the subsurface ocean within the Jovian moon Europa using a suite of ten investigations. The Europa Clipper Magnetometer (ECM) and Plasma Instrument for Magnetic Sounding (PIMS) investigations will be used in unison to characterize the thickness and electrical conductivity of Europa's subsurface ocean and the thickness of the ice shell by sensing the induced magnetic field, driven by the strong time-varying magnetic field of the Jovian environment. However, these measurements will be obscured by the magnetic field originating from the Europa Clipper spacecraft. In this work, a magnetic field model of the Europa Clipper spacecraft is presented, characterized with over 260 individual magnetic sources comprising various ferromagnetic and soft-magnetic materials, compensation magnets, solenoids, and dynamic electrical currents flowing within the spacecraft. This model is used to evaluate the magnetic field at arbitrary points around the spacecraft, notably at the locations of the three fluxgate magnetometer sensors and four Faraday cups which make up ECM and PIMS, respectively. The model is also used to evaluate the magnetic field uncertainty at these locations via a Monte Carlo approach. Furthermore, both linear and non-linear gradiometry fitting methods are presented to demonstrate the ability to reliably disentangle the spacecraft field from the ambient using an array of three fluxgate magnetometer sensors mounted along an 8.5-meter (m) long boom. The method is also shown to be useful for optimizing the locations of the magnetometer sensors along the boom. Finally, we illustrate how the model can be used to visualize the magnetic field lines of the spacecraft, thus providing very insightful information for each investigation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11214-023-00974-y.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"219 4","pages":"34"},"PeriodicalIF":9.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10220138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-023-00974-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of NASA's Europa Clipper Mission is to investigate the habitability of the subsurface ocean within the Jovian moon Europa using a suite of ten investigations. The Europa Clipper Magnetometer (ECM) and Plasma Instrument for Magnetic Sounding (PIMS) investigations will be used in unison to characterize the thickness and electrical conductivity of Europa's subsurface ocean and the thickness of the ice shell by sensing the induced magnetic field, driven by the strong time-varying magnetic field of the Jovian environment. However, these measurements will be obscured by the magnetic field originating from the Europa Clipper spacecraft. In this work, a magnetic field model of the Europa Clipper spacecraft is presented, characterized with over 260 individual magnetic sources comprising various ferromagnetic and soft-magnetic materials, compensation magnets, solenoids, and dynamic electrical currents flowing within the spacecraft. This model is used to evaluate the magnetic field at arbitrary points around the spacecraft, notably at the locations of the three fluxgate magnetometer sensors and four Faraday cups which make up ECM and PIMS, respectively. The model is also used to evaluate the magnetic field uncertainty at these locations via a Monte Carlo approach. Furthermore, both linear and non-linear gradiometry fitting methods are presented to demonstrate the ability to reliably disentangle the spacecraft field from the ambient using an array of three fluxgate magnetometer sensors mounted along an 8.5-meter (m) long boom. The method is also shown to be useful for optimizing the locations of the magnetometer sensors along the boom. Finally, we illustrate how the model can be used to visualize the magnetic field lines of the spacecraft, thus providing very insightful information for each investigation.
Supplementary information: The online version contains supplementary material available at 10.1007/s11214-023-00974-y.
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.