Redox Bridling of GIRK Channel Activity.

IF 5.1 Q2 CELL BIOLOGY Function (Oxford, England) Pub Date : 2023-01-01 DOI:10.1093/function/zqad027
Anna Boccaccio, Rocio K Finol-Urdaneta
{"title":"Redox Bridling of GIRK Channel Activity.","authors":"Anna Boccaccio, Rocio K Finol-Urdaneta","doi":"10.1093/function/zqad027","DOIUrl":null,"url":null,"abstract":"pr otein-gated inw ardl y r ectifying potassium (GIRK, Kir3.x) hannels belong to the large family of inw ardl y r ectifying potasium (Kir) channels expressed throughout the body. Activation nd consequent opening of GIRK channels allow inward flow of otassium (K + ) ions into the cell resulting in membrane potenial hyperpolarization and decr eased excita bility. Thus, GIRK hannels play a key role in regulating the activity of neurons and ontrolling important physiological processes including neuonal excita bility, heart r ate , and pain per ception. 1 GIRK channels are integral membrane proteins, existing s homoor heterotetr amers. Eac h monomer features two embrane-spanning helices (M1 and M2), a re-entrant P-loop or controlling ion permeation and selectivity, and extensive ntracellular aminoand carboxy-termini crucial for channel ating. Permeation is regulated by an inner helix gate formed y the M2 segments and a cytoplasmic G-loop gate. 1 Acti v ation of GIRK channels is mediated by the direct interction of G βγ subunits, released from various G protein-coupled ece ptors (GPCRs) upon the acti v ation of inhibitory neuroransmitter r ece ptors. Howev er, the acti vity of GIRK channels epends on the presence of the membrane anionic phospholipid hosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 or PIP 2 ) while it s also modulated by ubiquitously present sodium (Na + ) ions. urthermore , GIRK c hannels ar e too r e gulated by c holesterol, hosphorylation, ethanol, etcetera. 1 The crystal structures of ecombinant GIRK channels have offered valuable insights into ow they are functionally regulated by various ligands. Thus, hannel opening is facilitated by PIP 2 at the plasma membrane, hereas G βγ and Na + modulate the c hannel’s inter action with IP 2 through conformational changes that govern the gating proess. 2 The intracellular milieu is a reducing environment charcterized by a balanced redox state. This state is crucial to upport cellular processes while serving as a pr otecti v e shield","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":"4 4","pages":"zqad027"},"PeriodicalIF":5.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278978/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqad027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

pr otein-gated inw ardl y r ectifying potassium (GIRK, Kir3.x) hannels belong to the large family of inw ardl y r ectifying potasium (Kir) channels expressed throughout the body. Activation nd consequent opening of GIRK channels allow inward flow of otassium (K + ) ions into the cell resulting in membrane potenial hyperpolarization and decr eased excita bility. Thus, GIRK hannels play a key role in regulating the activity of neurons and ontrolling important physiological processes including neuonal excita bility, heart r ate , and pain per ception. 1 GIRK channels are integral membrane proteins, existing s homoor heterotetr amers. Eac h monomer features two embrane-spanning helices (M1 and M2), a re-entrant P-loop or controlling ion permeation and selectivity, and extensive ntracellular aminoand carboxy-termini crucial for channel ating. Permeation is regulated by an inner helix gate formed y the M2 segments and a cytoplasmic G-loop gate. 1 Acti v ation of GIRK channels is mediated by the direct interction of G βγ subunits, released from various G protein-coupled ece ptors (GPCRs) upon the acti v ation of inhibitory neuroransmitter r ece ptors. Howev er, the acti vity of GIRK channels epends on the presence of the membrane anionic phospholipid hosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 or PIP 2 ) while it s also modulated by ubiquitously present sodium (Na + ) ions. urthermore , GIRK c hannels ar e too r e gulated by c holesterol, hosphorylation, ethanol, etcetera. 1 The crystal structures of ecombinant GIRK channels have offered valuable insights into ow they are functionally regulated by various ligands. Thus, hannel opening is facilitated by PIP 2 at the plasma membrane, hereas G βγ and Na + modulate the c hannel’s inter action with IP 2 through conformational changes that govern the gating proess. 2 The intracellular milieu is a reducing environment charcterized by a balanced redox state. This state is crucial to upport cellular processes while serving as a pr otecti v e shield
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GIRK通道活性的氧化还原约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
IK Channel Confers Fine-tuning of Rod Bipolar Cell Excitation and Synaptic Transmission in the Retina. STIMulating salivary glands. Molecular and Functional Characterization of the Peritoneal Mesothelium, a Barrier for Solute Transport. The core circadian clock factor, Bmal1, transduces sex-specific differences in both rhythmic and non-rhythmic gene expression in the mouse heart. Increased Anion Exchanger-1 (Band 3) on the Red Blood Cell Membrane Accelerates Scavenge of Nitric Oxide Metabolites and Predisposes Hypertension Risks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1