Ion Channel Lateral Diffusion Reveals the Maturation Process of the Neuronal Actin Cytoskeleton.

IF 5.1 Q2 CELL BIOLOGY Function (Oxford, England) Pub Date : 2023-01-01 DOI:10.1093/function/zqad029
Luis A Pardo
{"title":"Ion Channel Lateral Diffusion Reveals the Maturation Process of the Neuronal Actin Cytoskeleton.","authors":"Luis A Pardo","doi":"10.1093/function/zqad029","DOIUrl":null,"url":null,"abstract":"mall-conductance calcium-acti v ated potassium (SK) channels r e v olta ge-inde pendent K + channels that acti v ate in r esponse o a rise in cytoplasmic Ca 2 + 1 . In neurons, they are, therefore, b le to r educe Ca 2 + entr y in spines and dendrites, limiting proonged depolarization. SK channels can also be found in the oma and in axons, where they likely contribute to spike freuency adaptation. Gu and colleagues used single-particle tr ac kng 2 of SK channels in different areas of pyramidal hippocamal neurons in cultures of different ages. The diffusion coefcient of SK channels was determined along the maturation rocess of the neuronal culture using biotinylated apamin and tr e ptavidin-conjugated quantum dots to label the channels in ombination with total internal reflection microscopy. At the ame time, actin cytoskeleton integrity was manipulated pharacologically to investigate its impact on the diffusion velocity f SK channels. The approach allowed tracking the diffusion of he channel in different compartments, which served as a proxy o determine the stability of actin cytoskeletal structures. Since ta b le actin filaments limited the distribution of SK channels, it as possib le to infer how structured the actin cytoskeleton was long the maturation pr ocess. Importantl y, the submembrane ctin cytoskeleton is incr easingl y r egarded as a crucial factor for odulating the activity of ion channels and transporters at the lasma membrane (see Morache vska ya and Sudarikova 3 ). Neuronal function critically depends on the cytoar c hitecture f the neuron. The cytoskeleton plays a critical role in mainaining the proper neural computation that goes far beyond er e mechanical sta bility and shape maintenance. Specialized tructures crucial for neurotransmission, such as the node of anvier, the axon initial segment (AIS), or synaptic terminals, are","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278981/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqad029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

mall-conductance calcium-acti v ated potassium (SK) channels r e v olta ge-inde pendent K + channels that acti v ate in r esponse o a rise in cytoplasmic Ca 2 + 1 . In neurons, they are, therefore, b le to r educe Ca 2 + entr y in spines and dendrites, limiting proonged depolarization. SK channels can also be found in the oma and in axons, where they likely contribute to spike freuency adaptation. Gu and colleagues used single-particle tr ac kng 2 of SK channels in different areas of pyramidal hippocamal neurons in cultures of different ages. The diffusion coefcient of SK channels was determined along the maturation rocess of the neuronal culture using biotinylated apamin and tr e ptavidin-conjugated quantum dots to label the channels in ombination with total internal reflection microscopy. At the ame time, actin cytoskeleton integrity was manipulated pharacologically to investigate its impact on the diffusion velocity f SK channels. The approach allowed tracking the diffusion of he channel in different compartments, which served as a proxy o determine the stability of actin cytoskeletal structures. Since ta b le actin filaments limited the distribution of SK channels, it as possib le to infer how structured the actin cytoskeleton was long the maturation pr ocess. Importantl y, the submembrane ctin cytoskeleton is incr easingl y r egarded as a crucial factor for odulating the activity of ion channels and transporters at the lasma membrane (see Morache vska ya and Sudarikova 3 ). Neuronal function critically depends on the cytoar c hitecture f the neuron. The cytoskeleton plays a critical role in mainaining the proper neural computation that goes far beyond er e mechanical sta bility and shape maintenance. Specialized tructures crucial for neurotransmission, such as the node of anvier, the axon initial segment (AIS), or synaptic terminals, are
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子通道横向扩散揭示神经元肌动蛋白细胞骨架的成熟过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Thick Ascending Limb Specific Inactivation of Myh9 and Myh10 Myosin Motors Results in Progressive Kidney Disease and Drives Sex-specific Cellular Adaptation in the Distal Nephron and Collecting Duct. Loss of STIM1 and STIM2 in salivary glands disrupts ANO1 function but does not induce Sjogren's disease. Bridging the Gap: How Endothelial-Adipocyte Cx43 Mediated Gap Junctions Could Revolutionize Adiposity Regulation. The P2Y6 receptor as a potential keystone in essential hypertension. PARticularly Forceful: PAR1 Drives Glomerular Mesangial Cell Contractility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1