{"title":"Performance Analysis of Conventional and DMLS Copper Electrode During EDM Process in AA4032-TiC Composite.","authors":"Senthilkumar Thangarajan Sivasankaran, Senthil Kumar Shanmugakani, Rathinavel Subbiah","doi":"10.1089/3dp.2021.0030","DOIUrl":null,"url":null,"abstract":"<p><p>In recent days, the additive manufacturing process plays a vital role in the production of tool electrodes, which are used in the electrical discharge machining (EDM) process. In this work, the copper (Cu) electrodes prepared using the direct metal laser sintering (DMLS) process are used for the EDM process. The performance of the DMLS Cu electrode is studied by machining the AA4032-TiC composite material using the EDM process. Then the performance of the DMLS Cu electrode is compared with the conventional Cu electrode. Three input parameters, such as peak current (A), pulse on time (s), and gap voltage (v), are selected for the EDM process. The performance measures, which are determined during the EDM process, are material removal rate (MRR), tool wear rate, surface roughness (SR), microstructural analysis of machined surface, and residual stress. At a higher pulse on time, more material was removed from the workpiece surface and thus MRR is enhanced. Likewise, at a higher peak current, the SR is amplified and thus wider craters are formed on the machined surface. The residual stress on the machined surface has influenced the formation of craters, microvoids, and globules. Lower SR and residual stress are attained by using DMLS Cu electrode, whereas MRR is higher when using conventional Cu electrode.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 3","pages":"569-583"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In recent days, the additive manufacturing process plays a vital role in the production of tool electrodes, which are used in the electrical discharge machining (EDM) process. In this work, the copper (Cu) electrodes prepared using the direct metal laser sintering (DMLS) process are used for the EDM process. The performance of the DMLS Cu electrode is studied by machining the AA4032-TiC composite material using the EDM process. Then the performance of the DMLS Cu electrode is compared with the conventional Cu electrode. Three input parameters, such as peak current (A), pulse on time (s), and gap voltage (v), are selected for the EDM process. The performance measures, which are determined during the EDM process, are material removal rate (MRR), tool wear rate, surface roughness (SR), microstructural analysis of machined surface, and residual stress. At a higher pulse on time, more material was removed from the workpiece surface and thus MRR is enhanced. Likewise, at a higher peak current, the SR is amplified and thus wider craters are formed on the machined surface. The residual stress on the machined surface has influenced the formation of craters, microvoids, and globules. Lower SR and residual stress are attained by using DMLS Cu electrode, whereas MRR is higher when using conventional Cu electrode.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.