Physical wedge as a tool for radiochromic film calibration.

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2023-06-29 DOI:10.1016/j.zemedi.2023.05.008
Stevan Pecić, Miloš Vićić, Ivan Belča, Strahinja Stojadinović, Borko Nidžović, Ljubomir Kurij, Slobodan Dević
{"title":"Physical wedge as a tool for radiochromic film calibration.","authors":"Stevan Pecić,&nbsp;Miloš Vićić,&nbsp;Ivan Belča,&nbsp;Strahinja Stojadinović,&nbsp;Borko Nidžović,&nbsp;Ljubomir Kurij,&nbsp;Slobodan Dević","doi":"10.1016/j.zemedi.2023.05.008","DOIUrl":null,"url":null,"abstract":"<p><p>Reliable calibration is one of the major challenges in using radiochromic films (RCF) for radiation dosimetry. In this study the feasibility of using dose gradients produced by a physical wedge (PW) for RCF calibration was investigated. The aim was to establish an efficient and reproducible method for calibrating RCF using a PW. Film strips were used to capture the wedge dose profile for five different exposures and the acquired scans were processed to generate corresponding net optical density wedge profiles. The proposed method was compared to the benchmark calibration, following the guidelines for precise calibration using uniform dose fields. The results of the benchmark comparison presented in this paper showed that using a single film strip for measuring wedge dose profile is sufficient for estimating a reliable calibration curve within the recorded dose range. Furthermore, the PW calibration can be extrapolated or extended by using multiple gradients for the optimal coverage of the desired calibration dose range. The method outlined in this paper can be readily replicated using the equipment and expertise commonly found in a radiotherapy center. Once the dose profile and central axis attenuation coefficient of the PW are determined, they can serve as a reference for a variety of calibrations using different types and batches of film. This investigation demonstrated that the calibration curves obtained with the presented PW calibration method are within the bounds of the measurement uncertainty evaluated for the conventional uniform dose field calibration method.</p>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2023.05.008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable calibration is one of the major challenges in using radiochromic films (RCF) for radiation dosimetry. In this study the feasibility of using dose gradients produced by a physical wedge (PW) for RCF calibration was investigated. The aim was to establish an efficient and reproducible method for calibrating RCF using a PW. Film strips were used to capture the wedge dose profile for five different exposures and the acquired scans were processed to generate corresponding net optical density wedge profiles. The proposed method was compared to the benchmark calibration, following the guidelines for precise calibration using uniform dose fields. The results of the benchmark comparison presented in this paper showed that using a single film strip for measuring wedge dose profile is sufficient for estimating a reliable calibration curve within the recorded dose range. Furthermore, the PW calibration can be extrapolated or extended by using multiple gradients for the optimal coverage of the desired calibration dose range. The method outlined in this paper can be readily replicated using the equipment and expertise commonly found in a radiotherapy center. Once the dose profile and central axis attenuation coefficient of the PW are determined, they can serve as a reference for a variety of calibrations using different types and batches of film. This investigation demonstrated that the calibration curves obtained with the presented PW calibration method are within the bounds of the measurement uncertainty evaluated for the conventional uniform dose field calibration method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理楔子作为放射色膜校准的工具。
可靠的校准是使用放射性致色膜(RCF)进行辐射剂量测定的主要挑战之一。本研究探讨了利用物理楔(PW)产生的剂量梯度进行RCF校准的可行性。目的是建立一种使用PW校准RCF的有效和可重复的方法。使用薄膜条捕获五种不同曝光的楔形剂量分布图,并对获得的扫描进行处理以生成相应的净光密度楔形分布图。按照均匀剂量场精确校准的指导方针,将所提出的方法与基准校准进行了比较。本文给出的基准对比结果表明,在记录的剂量范围内,用单个薄膜条测量楔形剂量分布足以估计出可靠的校准曲线。此外,PW校准可以通过使用多个梯度来外推或扩展,以获得所需校准剂量范围的最佳覆盖范围。本文概述的方法可以使用放射治疗中心常见的设备和专业知识很容易地复制。一旦确定了PW的剂量分布和中轴衰减系数,就可以作为使用不同类型和批次的薄膜进行各种校准的参考。研究表明,所提出的PW校准方法得到的校准曲线在常规均匀剂量场校准方法的测量不确定度范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Development and clinical implementation of a digital system for risk assessments for radiation therapy End-to-end testing for stereotactic radiotherapy including the development of a Multi-Modality phantom Note on uncertainty in Monte Carlo dose calculations and its relation to microdosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1