Complete degradation of di-n-butyl phthalate by Glutamicibacter sp. strain 0426 with a novel pathway

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biodegradation Pub Date : 2023-07-03 DOI:10.1007/s10532-023-10032-7
Chongyang Ren, Yiying Wang, Yanan Wu, He-Ping Zhao, Li Li
{"title":"Complete degradation of di-n-butyl phthalate by Glutamicibacter sp. strain 0426 with a novel pathway","authors":"Chongyang Ren,&nbsp;Yiying Wang,&nbsp;Yanan Wu,&nbsp;He-Ping Zhao,&nbsp;Li Li","doi":"10.1007/s10532-023-10032-7","DOIUrl":null,"url":null,"abstract":"<div><p>Di-<i>n</i>-butyl phthalate (DBP) is widely used as plasticizer that has potential carcinogenic, teratogenic, and endocrine effects. In the present study, an efficient DBP-degrading bacterial strain 0426 was isolated and identified as a <i>Glutamicibacter</i> sp. strain 0426. It can utilize DBP as the sole source of carbon and energy and completely degraded 300 mg/L of DBP within 12 h. The optimal conditions (pH 6.9 and 31.7 °C) for DBP degradation were determined by response surface methodology and DBP degradation well fitted with the first-order kinetics. Bioaugmentation of contaminated soil with strain 0426 enhanced DBP (1 mg/g soil) degradation, indicating the application potential of strain 0426 for environment DBP removal. Strain 0426 harbors a distinctive DBP hydrolysis mechanism with two parallel benzoate metabolic pathways, which may account for the remarkable performance of DBP degradation. Sequences alignment has shown that an alpha/beta fold hydrolase (WP_083586847.1) contained a conserved catalytic triad and pentapeptide motif (GX1SX2G), of which function is similar to phthalic acid ester (PAEs) hydrolases and lipases that can efficiently catalyze hydrolysis of water-insoluble substrates. Furthermore, phthalic acid was converted to benzoate by decarboxylation, which entered into two different pathways: one is the protocatechuic acid pathway under the role of <i>pca</i> cluster, and the other is the catechol pathway. This study demonstrates a novel DBP degradation pathway, which broadens our understanding of the mechanisms of PAE biodegradation.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 1","pages":"87 - 99"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10032-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Di-n-butyl phthalate (DBP) is widely used as plasticizer that has potential carcinogenic, teratogenic, and endocrine effects. In the present study, an efficient DBP-degrading bacterial strain 0426 was isolated and identified as a Glutamicibacter sp. strain 0426. It can utilize DBP as the sole source of carbon and energy and completely degraded 300 mg/L of DBP within 12 h. The optimal conditions (pH 6.9 and 31.7 °C) for DBP degradation were determined by response surface methodology and DBP degradation well fitted with the first-order kinetics. Bioaugmentation of contaminated soil with strain 0426 enhanced DBP (1 mg/g soil) degradation, indicating the application potential of strain 0426 for environment DBP removal. Strain 0426 harbors a distinctive DBP hydrolysis mechanism with two parallel benzoate metabolic pathways, which may account for the remarkable performance of DBP degradation. Sequences alignment has shown that an alpha/beta fold hydrolase (WP_083586847.1) contained a conserved catalytic triad and pentapeptide motif (GX1SX2G), of which function is similar to phthalic acid ester (PAEs) hydrolases and lipases that can efficiently catalyze hydrolysis of water-insoluble substrates. Furthermore, phthalic acid was converted to benzoate by decarboxylation, which entered into two different pathways: one is the protocatechuic acid pathway under the role of pca cluster, and the other is the catechol pathway. This study demonstrates a novel DBP degradation pathway, which broadens our understanding of the mechanisms of PAE biodegradation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用新型途径完全降解邻苯二甲酸二正丁酯的 Glutamicibacter sp.
邻苯二甲酸二正丁酯(DBP)被广泛用作增塑剂,具有潜在的致癌、致畸和影响内分泌的作用。本研究分离并鉴定了一种高效降解 DBP 的细菌菌株 0426,即 Glutamicibacter sp.通过响应面方法确定了降解 DBP 的最佳条件(pH 6.9 和 31.7 °C),DBP 降解与一阶动力学非常吻合。用菌株 0426 对污染土壤进行生物增殖可增强 DBP(1 毫克/克土壤)的降解,这表明菌株 0426 在去除环境 DBP 方面具有应用潜力。菌株 0426 具有独特的 DBP 水解机制,有两条并行的苯甲酸盐代谢途径,这可能是其降解 DBP 性能显著的原因。序列比对结果表明,α/β折叠水解酶(WP_083586847.1)含有保守的催化三元组和五肽基(GX1SX2G),其功能与邻苯二甲酸酯(PAEs)水解酶和脂肪酶相似,可有效催化水不溶性底物的水解。此外,邻苯二甲酸经脱羧转化为苯甲酸,进入两条不同的途径:一条是在 pca 簇作用下的原儿茶酸途径,另一条是儿茶酚途径。这项研究展示了一种新的 DBP 降解途径,拓宽了我们对 PAE 生物降解机理的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
期刊最新文献
Evaluation of microbial community dynamics and chlorinated solvent biodegradation in methane-amended microcosms from an acidic aquifer Disentangling the microbial genomic traits associated with aromatic hydrocarbon degradation in a jet fuel-contaminated aquifer Revolutionizing dairy waste: emerging solutions in conjunction with microbial engineering Isolation and purification of esterase enzyme from marine bacteria associated with biodegradation of polyvinyl chloride (PVC) Insights of energy potential in thermophilic sugarcane vinasse and molasses treatment: does two-stage codigestion enhance operational performance?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1