Culture Models to Investigate Mechanisms of Milk Production and Blood-Milk Barrier in Mammary Epithelial Cells: a Review and a Protocol.

IF 3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Mammary Gland Biology and Neoplasia Pub Date : 2023-05-01 DOI:10.1007/s10911-023-09536-y
Ken Kobayashi
{"title":"Culture Models to Investigate Mechanisms of Milk Production and Blood-Milk Barrier in Mammary Epithelial Cells: a Review and a Protocol.","authors":"Ken Kobayashi","doi":"10.1007/s10911-023-09536-y","DOIUrl":null,"url":null,"abstract":"<p><p>Mammary epithelial cells (MECs) are the only cell type that produces milk during lactation. MECs also form less-permeable tight junctions (TJs) to prevent the leakage of milk and blood components through the paracellular pathway (blood-milk barrier). Multiple factors that include hormones, cytokines, nutrition, and temperature regulate milk production and TJ formation in MECs. Multiple intracellular signaling pathways that positively and negatively regulate milk production and TJ formation have been reported. However, their regulatory mechanisms have not been fully elucidated. In addition, unidentified components that regulate milk production in MECs likely exist in foods, for example plants. Culture models of functional MECs that recapitulate milk production and TJs are useful tools for their study. Such models enable the elimination of indirect effects via cells other than MECs and allows for more detailed experimental conditions. However, culture models of MECs with inappropriate functionality may result in unphysiological reactions that never occur in lactating mammary glands in vivo. Here, I briefly review the physiological functions of alveolar MECs during lactation in vivo and culture models of MECs that feature milk production and less-permeable TJs, together with a protocol for establishment of MEC culture with functional TJ barrier and milk production capability using cell culture inserts.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"28 1","pages":"8"},"PeriodicalIF":3.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151314/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-023-09536-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 2

Abstract

Mammary epithelial cells (MECs) are the only cell type that produces milk during lactation. MECs also form less-permeable tight junctions (TJs) to prevent the leakage of milk and blood components through the paracellular pathway (blood-milk barrier). Multiple factors that include hormones, cytokines, nutrition, and temperature regulate milk production and TJ formation in MECs. Multiple intracellular signaling pathways that positively and negatively regulate milk production and TJ formation have been reported. However, their regulatory mechanisms have not been fully elucidated. In addition, unidentified components that regulate milk production in MECs likely exist in foods, for example plants. Culture models of functional MECs that recapitulate milk production and TJs are useful tools for their study. Such models enable the elimination of indirect effects via cells other than MECs and allows for more detailed experimental conditions. However, culture models of MECs with inappropriate functionality may result in unphysiological reactions that never occur in lactating mammary glands in vivo. Here, I briefly review the physiological functions of alveolar MECs during lactation in vivo and culture models of MECs that feature milk production and less-permeable TJs, together with a protocol for establishment of MEC culture with functional TJ barrier and milk production capability using cell culture inserts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究乳腺上皮细胞产乳和血-乳屏障机制的培养模型:综述和方案。
乳腺上皮细胞(MECs)是哺乳期唯一产生乳汁的细胞类型。mec还形成不易渗透的紧密连接(TJs),以防止乳和血液成分通过细胞旁途径(血-乳屏障)渗漏。包括激素、细胞因子、营养和温度在内的多种因素调节着mec的产奶量和TJ形成。多种细胞内信号通路正向和负向调节产奶量和TJ的形成。然而,它们的调控机制尚未完全阐明。此外,mec中调节牛奶产量的未知成分可能存在于食物中,例如植物。功能mec的培养模型概括了牛奶产量和tj是他们研究的有用工具。这种模型能够消除通过mec以外的细胞产生的间接影响,并允许更详细的实验条件。然而,功能不合适的mec培养模型可能导致体内泌乳乳腺中从未发生过的非生理性反应。在这里,我简要回顾了哺乳期间肺泡MEC的生理功能,以及具有产奶和低渗透性TJ的MEC培养模型,以及使用细胞培养插入物建立具有功能性TJ屏障和产奶能力的MEC培养方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mammary Gland Biology and Neoplasia
Journal of Mammary Gland Biology and Neoplasia 医学-内分泌学与代谢
CiteScore
5.30
自引率
4.00%
发文量
22
期刊介绍: Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function. Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.
期刊最新文献
15th Annual ENBDC Meeting: How do Cellular Potency, Microenvironment and Natural Rhythms Influence Mammary Gland Biology and Breast Cancer? Gestational breast cancer: distinctive molecular and clinico-epidemiological features. Intramammary Labeling of Epithelial Cell Division. Immune Cell Contribution to Mammary Gland Development. Perimenopausal and Menopausal Mammary Glands In A 4-Vinylcyclohexene Diepoxide Mouse Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1