{"title":"Sodium-mediated plateau potentials in an identified decisional neuron contribute to feeding-related motor pattern genesis in <i>Aplysia</i>.","authors":"Alexis Bédécarrats, John Simmers, Romuald Nargeot","doi":"10.3389/fncir.2023.1200902","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated behaviors such as feeding depend on the functional properties of decision neurons to provide the flexibility required for behavioral adaptation. Here, we analyzed the ionic basis of the endogenous membrane properties of an identified decision neuron (B63) that drive radula biting cycles underlying food-seeking behavior in <i>Aplysia</i>. Each spontaneous bite cycle arises from the irregular triggering of a plateau-like potential and resultant bursting by rhythmic subthreshold oscillations in B63's membrane potential. In isolated buccal ganglion preparations, and after synaptic isolation, the expression of B63's plateau potentials persisted after removal of extracellular calcium, but was completely suppressed in a tetrodotoxin (TTX)- containing bath solution, thereby indicating the contribution of a transmembrane Na<sup>+</sup> influx. Potassium outward efflux through tetraethylammonium (TEA)- and calcium-sensitive channels was found to contribute to each plateau's active termination. This intrinsic plateauing capability, in contrast to B63's membrane potential oscillation, was blocked by the calcium-activated non-specific cationic current (<i>I</i><sub><i>CAN</i></sub>) blocker flufenamic acid (FFA). Conversely, the SERCA blocker cyclopianozic acid (CPA), which abolished the neuron's oscillation, did not prevent the expression of experimentally evoked plateau potentials. These results therefore indicate that the dynamic properties of the decision neuron B63 rely on two distinct mechanisms involving different sub-populations of ionic conductances.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1200902"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288323/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neural Circuits","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2023.1200902","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated behaviors such as feeding depend on the functional properties of decision neurons to provide the flexibility required for behavioral adaptation. Here, we analyzed the ionic basis of the endogenous membrane properties of an identified decision neuron (B63) that drive radula biting cycles underlying food-seeking behavior in Aplysia. Each spontaneous bite cycle arises from the irregular triggering of a plateau-like potential and resultant bursting by rhythmic subthreshold oscillations in B63's membrane potential. In isolated buccal ganglion preparations, and after synaptic isolation, the expression of B63's plateau potentials persisted after removal of extracellular calcium, but was completely suppressed in a tetrodotoxin (TTX)- containing bath solution, thereby indicating the contribution of a transmembrane Na+ influx. Potassium outward efflux through tetraethylammonium (TEA)- and calcium-sensitive channels was found to contribute to each plateau's active termination. This intrinsic plateauing capability, in contrast to B63's membrane potential oscillation, was blocked by the calcium-activated non-specific cationic current (ICAN) blocker flufenamic acid (FFA). Conversely, the SERCA blocker cyclopianozic acid (CPA), which abolished the neuron's oscillation, did not prevent the expression of experimentally evoked plateau potentials. These results therefore indicate that the dynamic properties of the decision neuron B63 rely on two distinct mechanisms involving different sub-populations of ionic conductances.
期刊介绍:
Frontiers in Neural Circuits publishes rigorously peer-reviewed research on the emergent properties of neural circuits - the elementary modules of the brain. Specialty Chief Editors Takao K. Hensch and Edward Ruthazer at Harvard University and McGill University respectively, are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Frontiers in Neural Circuits launched in 2011 with great success and remains a "central watering hole" for research in neural circuits, serving the community worldwide to share data, ideas and inspiration. Articles revealing the anatomy, physiology, development or function of any neural circuitry in any species (from sponges to humans) are welcome. Our common thread seeks the computational strategies used by different circuits to link their structure with function (perceptual, motor, or internal), the general rules by which they operate, and how their particular designs lead to the emergence of complex properties and behaviors. Submissions focused on synaptic, cellular and connectivity principles in neural microcircuits using multidisciplinary approaches, especially newer molecular, developmental and genetic tools, are encouraged. Studies with an evolutionary perspective to better understand how circuit design and capabilities evolved to produce progressively more complex properties and behaviors are especially welcome. The journal is further interested in research revealing how plasticity shapes the structural and functional architecture of neural circuits.