Sleep across the first year of life is prospectively associated with brain volume in 12-months old infants

Katharina Pittner , Jerod Rasmussen , Miranda M. Lim , John H. Gilmore , Martin Styner , Sonja Entringer , Pathik D. Wadhwa , Claudia Buss
{"title":"Sleep across the first year of life is prospectively associated with brain volume in 12-months old infants","authors":"Katharina Pittner ,&nbsp;Jerod Rasmussen ,&nbsp;Miranda M. Lim ,&nbsp;John H. Gilmore ,&nbsp;Martin Styner ,&nbsp;Sonja Entringer ,&nbsp;Pathik D. Wadhwa ,&nbsp;Claudia Buss","doi":"10.1016/j.nbscr.2023.100091","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Longer sleep duration in infancy supports cognitive and affective functioning – likely through effects on brain development. From childhood through old age, there is evidence for a close link between sleep and brain volume. However, little is known about the association between sleep duration and brain volume in infancy, a developmental period of unprecedented brain maturation. This study aimed to close this gap by assessing sleep duration across the first year of life and gray and white matter volume at 12-mo age.</p></div><div><h3>Method</h3><p>Infant sleep duration trajectories across the first year of life were based on maternal reports at 1, 3, 6, 9, and 12 months of age. Infant specific trajectories were generated by running a logarithmic regression for each infant and residualizing the resulting slopes for their intercept. Structural magnetic resonance imaging (MRI) scans were acquired at 12-mo age. Gray and white matter volume estimates were residualized for intracranial volume and age at scan.</p></div><div><h3>Results</h3><p>Data to calculate sleep trajectories was available for 112 infants. Overall, sleep duration decreased over the course of the first year of life and was best described by a logarithmic function. Of these infants, data on brain volume was available for 45 infants at 12-mo age. Infants whose sleep duration decreased less during the first year of life relative to their intercept had, on average, greater white matter volume (β = .36, p = .02). Furthermore, average sleep duration across the first year of life, and sleep duration specifically at 6 and 9 months were positively associated with white matter volume. Sleep duration during the first year of life was not significantly associated with gray matter volume at 12-mo age.</p></div><div><h3>Conclusion</h3><p>Sufficient sleep duration may benefit infant white matter development – possibly by supporting myelination. The fact that sleep duration was not associated with gray matter volume is in line with preclinical studies suggesting that sleep may be crucial for the balance between synaptogenesis and synaptic pruning but not necessarily relate to a net increase in gray matter volume. Supporting sleep during periods of rapid brain development and intervening in case of sleep problems may have long-term benefits for cognitive function and mental health.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/ee/main.PMC10313911.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994423000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Longer sleep duration in infancy supports cognitive and affective functioning – likely through effects on brain development. From childhood through old age, there is evidence for a close link between sleep and brain volume. However, little is known about the association between sleep duration and brain volume in infancy, a developmental period of unprecedented brain maturation. This study aimed to close this gap by assessing sleep duration across the first year of life and gray and white matter volume at 12-mo age.

Method

Infant sleep duration trajectories across the first year of life were based on maternal reports at 1, 3, 6, 9, and 12 months of age. Infant specific trajectories were generated by running a logarithmic regression for each infant and residualizing the resulting slopes for their intercept. Structural magnetic resonance imaging (MRI) scans were acquired at 12-mo age. Gray and white matter volume estimates were residualized for intracranial volume and age at scan.

Results

Data to calculate sleep trajectories was available for 112 infants. Overall, sleep duration decreased over the course of the first year of life and was best described by a logarithmic function. Of these infants, data on brain volume was available for 45 infants at 12-mo age. Infants whose sleep duration decreased less during the first year of life relative to their intercept had, on average, greater white matter volume (β = .36, p = .02). Furthermore, average sleep duration across the first year of life, and sleep duration specifically at 6 and 9 months were positively associated with white matter volume. Sleep duration during the first year of life was not significantly associated with gray matter volume at 12-mo age.

Conclusion

Sufficient sleep duration may benefit infant white matter development – possibly by supporting myelination. The fact that sleep duration was not associated with gray matter volume is in line with preclinical studies suggesting that sleep may be crucial for the balance between synaptogenesis and synaptic pruning but not necessarily relate to a net increase in gray matter volume. Supporting sleep during periods of rapid brain development and intervening in case of sleep problems may have long-term benefits for cognitive function and mental health.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
12个月大婴儿出生后第一年的睡眠与脑容量前瞻性相关
婴儿期较长的睡眠时间有助于认知和情感功能——可能是通过对大脑发育的影响。从童年到老年,有证据表明睡眠和大脑容量之间存在密切联系。然而,人们对婴儿期睡眠时间和大脑容量之间的关系知之甚少,婴儿期是大脑前所未有的成熟期。这项研究旨在通过评估出生第一年的睡眠时间以及12个月大时的灰质和白质体积来缩小这一差距。方法婴儿出生第一年的睡眠时间轨迹基于1、3、6、9和12个月大时的母亲报告。通过对每个婴儿进行对数回归,并对其截距的斜率进行残差,生成婴儿特定轨迹。12月龄时进行结构磁共振成像(MRI)扫描。对扫描时颅内体积和年龄的灰质和白质体积估计值进行残差。结果获得了112例婴儿睡眠轨迹的计算数据。总的来说,睡眠时间在生命的第一年就减少了,最好用对数函数来描述。在这些婴儿中,有45名12个月大的婴儿的脑容量数据。与截距相比,出生第一年睡眠时间减少较少的婴儿的白质体积平均较大(β=.36,p=.02)。此外,第一年的平均睡眠时间,特别是6个月和9个月的睡眠时间,与白质体积呈正相关。出生第一年的睡眠时间与12个月大时的灰质体积没有显著相关性。结论充足的睡眠时间可能有利于婴儿白质的发育——可能是通过支持髓鞘形成。睡眠时间与灰质体积无关这一事实与临床前研究一致,临床前研究表明,睡眠可能对突触发生和突触修剪之间的平衡至关重要,但不一定与灰质体积的净增加有关。在大脑快速发育期间支持睡眠,并在出现睡眠问题时进行干预,可能对认知功能和心理健康有长期益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Sleep and Circadian Rhythms
Neurobiology of Sleep and Circadian Rhythms Neuroscience-Behavioral Neuroscience
CiteScore
4.50
自引率
0.00%
发文量
9
审稿时长
69 days
期刊介绍: Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.
期刊最新文献
Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats Gender differences in sleep quality among Iranian traditional and industrial drug users Development of Sleep and Circadian Rhythms: Function and Dysfunction. Effects of age and sex on photoperiod modulation of nucleus accumbens monoamine content and release in adolescence and adulthood The impact of long haul travel on the sleep of elite athletes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1