RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions.

IF 11.4 1区 生物学 Q1 CELL BIOLOGY Annual review of cell and developmental biology Pub Date : 2023-10-16 Epub Date: 2023-07-05 DOI:10.1146/annurev-cellbio-120420-014634
Michael Hanna, Andrés Guillén-Samander, Pietro De Camilli
{"title":"RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions.","authors":"Michael Hanna, Andrés Guillén-Samander, Pietro De Camilli","doi":"10.1146/annurev-cellbio-120420-014634","DOIUrl":null,"url":null,"abstract":"<p><p>The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating β-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"409-434"},"PeriodicalIF":11.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-120420-014634","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating β-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RBG基序桥状脂质转运蛋白:结构、功能和悬而未决的问题。
真核细胞的生命需要脂质在膜之间的运输,这些膜被胞质溶胶的水性环境分离。囊泡介导的沿着分泌和内吞途径的运输和脂质转移蛋白(LTP)在这种运输中协同作用。直到最近,已知的LTP被证明一次携带一种或几种脂质,并被认为通过类似穿梭机的机制介导转运。在过去的几年里,人们发现了一个新的LTP家族,它是由一个重复的β-槽(RBG)杆状结构定义的,其整个长度上都有一个疏水通道。这种结构和这些蛋白质在膜接触位点的定位表明了脂质转运的桥状机制。其中一些蛋白质的突变会导致神经退行性疾病和发育障碍。在这里,我们回顾了这些蛋白质的已知特性和公认或假定的生理作用,并强调了关于其功能的许多问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
期刊最新文献
Plant Cell Wall Loosening by Expansins. Ribosome Assembly and Repair. What Is a Plant Cell Type in the Age of Single-Cell Biology? It's Complicated. The Archaeal Cell Cycle. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1