Integrating temporal and spatial variabilities for identifying ion binding proteins in phage.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2023-06-01 DOI:10.1142/S0219720023500105
Hongliang Zou, Zizheng Yu, Zhijian Yin
{"title":"Integrating temporal and spatial variabilities for identifying ion binding proteins in phage.","authors":"Hongliang Zou,&nbsp;Zizheng Yu,&nbsp;Zhijian Yin","doi":"10.1142/S0219720023500105","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies reported that ion binding proteins (IBPs) in phage play a key role in developing drugs to treat diseases caused by drug-resistant bacteria. Therefore, correct recognition of IBPs is an urgent task, which is beneficial for understanding their biological functions. To explore this issue, a new computational model was developed to identify IBPs in this study. First, we used the physicochemical (PC) property and Pearson's correlation coefficient (PCC) to denote protein sequences, and the temporal and spatial variabilities were employed to extract features. Next, a similarity network fusion algorithm was employed to capture the correlation characteristics between these two different kinds of features. Then, a feature selection method called F-score was utilized to remove the influence of redundant and irrelative information. Finally, these reserved features were fed into support vector machine (SVM) to discriminate IBPs from non-IBPs. Experimental results showed that the proposed method has significant improvement in the classification performance, as compared with the state-of-the-art approach. The Matlab codes and dataset used in this study are available at https://figshare.com/articles/online_resource/iIBP-TSV/21779567 for academic use.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500105","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies reported that ion binding proteins (IBPs) in phage play a key role in developing drugs to treat diseases caused by drug-resistant bacteria. Therefore, correct recognition of IBPs is an urgent task, which is beneficial for understanding their biological functions. To explore this issue, a new computational model was developed to identify IBPs in this study. First, we used the physicochemical (PC) property and Pearson's correlation coefficient (PCC) to denote protein sequences, and the temporal and spatial variabilities were employed to extract features. Next, a similarity network fusion algorithm was employed to capture the correlation characteristics between these two different kinds of features. Then, a feature selection method called F-score was utilized to remove the influence of redundant and irrelative information. Finally, these reserved features were fed into support vector machine (SVM) to discriminate IBPs from non-IBPs. Experimental results showed that the proposed method has significant improvement in the classification performance, as compared with the state-of-the-art approach. The Matlab codes and dataset used in this study are available at https://figshare.com/articles/online_resource/iIBP-TSV/21779567 for academic use.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合噬菌体中离子结合蛋白的时空变异。
近年来的研究报道,噬菌体中的离子结合蛋白(IBPs)在开发治疗耐药细菌引起的疾病的药物中起着关键作用。因此,正确认识IBPs是一项紧迫的任务,这有利于了解IBPs的生物学功能。为了探讨这个问题,本研究开发了一个新的计算模型来识别ibp。首先,利用蛋白质序列的理化性质(PC)和Pearson相关系数(PCC)来表示蛋白质序列,并利用时间和空间变异性来提取特征;其次,采用相似网络融合算法捕获两种不同类型特征之间的关联特征。然后,利用F-score特征选择方法去除冗余和不相关信息的影响。最后,将这些保留特征输入到支持向量机(SVM)中,以区分ibp和非ibp。实验结果表明,与现有方法相比,该方法在分类性能上有显著提高。本研究中使用的Matlab代码和数据集可在https://figshare.com/articles/online_resource/iIBP-TSV/21779567上获得,供学术使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1