{"title":"Modulating ILC2 function for treatment of type 2 airway diseases.","authors":"Yung-An Huang, Allyssa Strohm, Taylor Doherty","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 airway diseases including chronic rhinosinusitis, allergic rhinitis, and asthma remain a major health concern. These disorders are largely characterized by an uncontrolled type 2 immune response with elevated cytokines of IL-4, IL-5 and IL-13, eosinophilic inflammation, goblet cell hyperplasia as well as tissue remodeling. In the last few decades, critical potential roles of innate lymphoid cells (ILCs) in type 2 human diseases have emerged. Unlike their lymphocyte counterpart T cells, ILCs lack antigen-specific receptors and are largely tissue resident. Specifically, group 2 innate lymphoid cells (ILC2s) respond to airway epithelium-derived alarmins (TSLP, IL-33) and secrete high levels of type 2 cytokines. ILC2 responses can bypass the activation of T cells as well as develop corticosteroid-resistance. Currently approved biologics targeting the alarmin thymic stromal lymphopoietin (TSLP) or the IL-4/IL-13 receptor may reduce ILC2 activation, though novel treatments of type 2 airway diseases remain needed. In this review, we briefly discuss the pathogenesis of ILC2-mediated airway diseases followed by their current and potential treatments.</p>","PeriodicalId":34989,"journal":{"name":"Current Trends in Immunology","volume":"23 ","pages":"85-90"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311961/pdf/nihms-1893631.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Trends in Immunology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 airway diseases including chronic rhinosinusitis, allergic rhinitis, and asthma remain a major health concern. These disorders are largely characterized by an uncontrolled type 2 immune response with elevated cytokines of IL-4, IL-5 and IL-13, eosinophilic inflammation, goblet cell hyperplasia as well as tissue remodeling. In the last few decades, critical potential roles of innate lymphoid cells (ILCs) in type 2 human diseases have emerged. Unlike their lymphocyte counterpart T cells, ILCs lack antigen-specific receptors and are largely tissue resident. Specifically, group 2 innate lymphoid cells (ILC2s) respond to airway epithelium-derived alarmins (TSLP, IL-33) and secrete high levels of type 2 cytokines. ILC2 responses can bypass the activation of T cells as well as develop corticosteroid-resistance. Currently approved biologics targeting the alarmin thymic stromal lymphopoietin (TSLP) or the IL-4/IL-13 receptor may reduce ILC2 activation, though novel treatments of type 2 airway diseases remain needed. In this review, we briefly discuss the pathogenesis of ILC2-mediated airway diseases followed by their current and potential treatments.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advances in the development and application of computer hardware, software, electronic instrumentation, and control systems for solving problems in agriculture, including agronomy, horticulture (in both its food and amenity aspects), forestry, aquaculture, and animal/livestock farming. The journal publishes original papers, reviews, and applications notes on topics pertaining to advances in the use of computers or electronics in plant or animal agricultural production, including agricultural soils, water, pests, controlled environments, structures, and wastes, as well as the plants and animals themselves. Post-harvest operations considered part of agriculture (such as drying, storage, logistics, production assessment, trimming and separation of plant and animal material) are also covered. Relevant areas of technology include artificial intelligence, sensors, machine vision, robotics, networking, and simulation modelling.