Arthur Lui, Juhee Lee, Peter F Thall, May Daher, Katy Rezvani, Rafet Basar
{"title":"A Bayesian feature allocation model for identifying cell subpopulations using CyTOF data.","authors":"Arthur Lui, Juhee Lee, Peter F Thall, May Daher, Katy Rezvani, Rafet Basar","doi":"10.1093/jrsssc/qlad029","DOIUrl":null,"url":null,"abstract":"<p><p>A Bayesian feature allocation model (FAM) is presented for identifying cell subpopulations based on multiple samples of cell surface or intracellular marker expression level data obtained by cytometry by time of flight (CyTOF). Cell subpopulations are characterized by differences in marker expression patterns, and cells are clustered into subpopulations based on their observed expression levels. A model-based method is used to construct cell clusters within each sample by modeling subpopulations as latent features, using a finite Indian buffet process. Non-ignorable missing data due to technical artifacts in mass cytometry instruments are accounted for by defining a static missingship mechanism. In contrast with conventional cell clustering methods, which cluster observed marker expression levels separately for each sample, the FAM-based method can be applied simultaneously to multiple samples, and also identify important cell subpopulations likely to be otherwise missed. The proposed FAM-based method is applied to jointly analyse three CyTOF datasets to study natural killer (NK) cells. Because the subpopulations identified by the FAM may define novel NK cell subsets, this statistical analysis may provide useful information about the biology of NK cells and their potential role in cancer immunotherapy which may lead, in turn, to development of improved NK cell therapies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A Bayesian feature allocation model (FAM) is presented for identifying cell subpopulations based on multiple samples of cell surface or intracellular marker expression level data obtained by cytometry by time of flight (CyTOF). Cell subpopulations are characterized by differences in marker expression patterns, and cells are clustered into subpopulations based on their observed expression levels. A model-based method is used to construct cell clusters within each sample by modeling subpopulations as latent features, using a finite Indian buffet process. Non-ignorable missing data due to technical artifacts in mass cytometry instruments are accounted for by defining a static missingship mechanism. In contrast with conventional cell clustering methods, which cluster observed marker expression levels separately for each sample, the FAM-based method can be applied simultaneously to multiple samples, and also identify important cell subpopulations likely to be otherwise missed. The proposed FAM-based method is applied to jointly analyse three CyTOF datasets to study natural killer (NK) cells. Because the subpopulations identified by the FAM may define novel NK cell subsets, this statistical analysis may provide useful information about the biology of NK cells and their potential role in cancer immunotherapy which may lead, in turn, to development of improved NK cell therapies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.