Surface Modification Strategies for Enhanced Morphological Performance in Biomedical Implantation: Recent Developments, Challenges, and Future Scope in the Health Sector.

Govind Murari, Ashutosh Maurya, Binayaka Nahak, Tej Pratap
{"title":"Surface Modification Strategies for Enhanced Morphological Performance in Biomedical Implantation: Recent Developments, Challenges, and Future Scope in the Health Sector.","authors":"Govind Murari,&nbsp;Ashutosh Maurya,&nbsp;Binayaka Nahak,&nbsp;Tej Pratap","doi":"10.1615/CritRevBiomedEng.2022045153","DOIUrl":null,"url":null,"abstract":"<p><p>Surface modification is the science of manipulating surface morphology and interfacial properties and also plays a vital role in biomedical implantation. A few of the interfacial properties are biocompatibility, protein adsorption, wettability, cell proliferation, collagen, etc. These properties depend on surface modification strategies and significantly impact the implant response within the host body. Generally, the corrosion, surface wear, and degradation in the physiological environment limit the application of different biomaterials and can address through various surface modification strategies. These surface modifications developed over the years to improve the morphology and interfacial properties to meet the specific functional surface application in biomedical implantation. It can be done through surface roughening, patterning/texturing, coating with different materials, and hybrid modification. Further, the process development for bio-medical application, process capabilities, limitations, challenges, and characterization aspects are correlated to identify the effectiveness of different surface modification strategies. Finally, various innovative biomedical applications and surface characteristics are also present with future scope in the direction of surface modification for biomedical implantation.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"50 6","pages":"13-43"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2022045153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Surface modification is the science of manipulating surface morphology and interfacial properties and also plays a vital role in biomedical implantation. A few of the interfacial properties are biocompatibility, protein adsorption, wettability, cell proliferation, collagen, etc. These properties depend on surface modification strategies and significantly impact the implant response within the host body. Generally, the corrosion, surface wear, and degradation in the physiological environment limit the application of different biomaterials and can address through various surface modification strategies. These surface modifications developed over the years to improve the morphology and interfacial properties to meet the specific functional surface application in biomedical implantation. It can be done through surface roughening, patterning/texturing, coating with different materials, and hybrid modification. Further, the process development for bio-medical application, process capabilities, limitations, challenges, and characterization aspects are correlated to identify the effectiveness of different surface modification strategies. Finally, various innovative biomedical applications and surface characteristics are also present with future scope in the direction of surface modification for biomedical implantation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学植入中增强形态性能的表面修饰策略:卫生部门的最新发展、挑战和未来范围。
表面修饰是一门操纵表面形态和界面性质的科学,在生物医学植入中起着至关重要的作用。其界面性能包括生物相容性、蛋白质吸附性、润湿性、细胞增殖性、胶原蛋白等。这些特性取决于表面修饰策略,并显著影响植入物在宿主体内的反应。一般来说,生理环境中的腐蚀、表面磨损和降解限制了不同生物材料的应用,可以通过各种表面改性策略来解决。这些表面修饰是多年来发展起来的,以改善形貌和界面性能,以满足生物医学植入中特定功能表面的应用。它可以通过表面粗化、图案/纹理、不同材料涂层和混合改性来实现。此外,生物医学应用的工艺开发、工艺能力、限制、挑战和表征方面相互关联,以确定不同表面改性策略的有效性。最后,还介绍了各种创新的生物医学应用和表面特性,并展望了生物医学植入表面修饰的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Biomedical Engineering
Critical Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
1.80
自引率
0.00%
发文量
25
期刊介绍: Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.
期刊最新文献
A Review on Implantable Neuroelectrodes. Using Fuzzy Mathematical Model in the Differential Diagnosis of Pancreatic Lesions Using Ultrasonography and Echographic Texture Analysis. Has Machine Learning Enhanced the Diagnosis of Autism Spectrum Disorder? Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases. Engineers in Medicine: Foster Innovation by Traversing Boundaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1