Fabrication and characterization of chlorhexidine gluconate loaded poly(vinyl alcohol)/45S5 nano-bioactive glass nanofibrous membrane for guided tissue regeneration applications

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biopolymers Pub Date : 2023-07-08 DOI:10.1002/bip.23562
Ceren Keçeciler-Emir, Yeliz Başaran-Elalmiş, Yeşim Müge Şahin, Erdi Buluş, Sevil Yücel
{"title":"Fabrication and characterization of chlorhexidine gluconate loaded poly(vinyl alcohol)/45S5 nano-bioactive glass nanofibrous membrane for guided tissue regeneration applications","authors":"Ceren Keçeciler-Emir,&nbsp;Yeliz Başaran-Elalmiş,&nbsp;Yeşim Müge Şahin,&nbsp;Erdi Buluş,&nbsp;Sevil Yücel","doi":"10.1002/bip.23562","DOIUrl":null,"url":null,"abstract":"<p>Polymeric barrier membranes are used in periodontal applications to prevent fibroblastic cell migration into the cavities of bone tissue and to properly guide the proliferation of tissues. In this study, the fabrication, characterization, bioactivity, and in vitro biological properties of polyvinyl alcohol-based nanofibrous membranes containing nano-sized 45S5 bioactive glass (BG) loaded with chlorhexidine (CH) gluconate with biocompatible, bioactive, and antibacterial properties for using as dental barrier membranes were investigated. Nanofibrous membranes with an average fiber diameter, pore size, and porosity of 210 nm, 24.73 μm, and 12.42%, respectively, were loaded with 1% and 2% CH, and the release profile was investigated. The presence of BG in the membranes promoted fibroblastic proliferation and the presence of CH provided antibacterial properties. Nanofibrous membranes exhibit a high ability to restrict bacterial growth while fulfilling the necessary conditions for use as a dental barrier thanks to their low swelling rates, significant surface bioactivities, and appropriate degradation levels.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23562","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymeric barrier membranes are used in periodontal applications to prevent fibroblastic cell migration into the cavities of bone tissue and to properly guide the proliferation of tissues. In this study, the fabrication, characterization, bioactivity, and in vitro biological properties of polyvinyl alcohol-based nanofibrous membranes containing nano-sized 45S5 bioactive glass (BG) loaded with chlorhexidine (CH) gluconate with biocompatible, bioactive, and antibacterial properties for using as dental barrier membranes were investigated. Nanofibrous membranes with an average fiber diameter, pore size, and porosity of 210 nm, 24.73 μm, and 12.42%, respectively, were loaded with 1% and 2% CH, and the release profile was investigated. The presence of BG in the membranes promoted fibroblastic proliferation and the presence of CH provided antibacterial properties. Nanofibrous membranes exhibit a high ability to restrict bacterial growth while fulfilling the necessary conditions for use as a dental barrier thanks to their low swelling rates, significant surface bioactivities, and appropriate degradation levels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
葡萄糖酸氯己定负载聚乙烯醇/45S5纳米生物活性玻璃纳米纤维膜的制备和表征,用于引导组织再生应用。
聚合物屏障膜用于牙周应用,以防止成纤维细胞迁移到骨组织的空腔中,并适当地引导组织的增殖。在本研究中,研究了含有纳米45S5生物活性玻璃(BG)的聚乙烯醇基纳米纤维膜的制备、表征、生物活性和体外生物学性能,该玻璃负载葡萄糖酸氯己定(CH),具有生物相容性、生物活性及抗菌性能,可用于牙科屏障膜。平均纤维直径、孔径和孔隙率为210的纳米纤维膜 纳米,24.73 μm和12.42%,分别负载1%和2%的CH,并研究了释放曲线。BG在膜中的存在促进了成纤维细胞的增殖,CH的存在提供了抗菌特性。纳米纤维膜由于其低溶胀率、显著的表面生物活性和适当的降解水平,在满足用作牙科屏障的必要条件的同时,表现出限制细菌生长的高能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
期刊最新文献
Issue Information 3D-Printed Gelatin-Based Scaffold Crosslinked by Genipin: Evaluation of Mechanical Properties and Biological Effect. 3D Printable Alginate-Chitosan Hydrogel Loaded With Ketoconazole Exhibits Anticryptococcal Activity. Fabrication of Bio-Based Composite Materials for Antimicrobial Cotton Fabric With Microbial Anti-Adhesive Activity. An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1