Effect of High Laser Energy Density on Selective Laser Melted 316L Stainless Steel: Analysis on Metallurgical and Mechanical Properties and Comparison with Wrought 316L Stainless Steel.
{"title":"Effect of High Laser Energy Density on Selective Laser Melted 316L Stainless Steel: Analysis on Metallurgical and Mechanical Properties and Comparison with Wrought 316L Stainless Steel.","authors":"Pradeep Kumar Shanmuganathan, Dinesh Babu Purushothaman, Marimuthu Ponnusamy","doi":"10.1089/3dp.2021.0061","DOIUrl":null,"url":null,"abstract":"<p><p>The austenitic 316L stainless steel (SS) is used extensively for marine applications as well as in construction, processing, and petrochemical industries due to its outstanding corrosion resistance properties. This study investigates the density, microhardness, and microstructural development of 316L SS samples fabricated by selective laser melting (SLM) under high laser energy densities. The selective laser melted (SLMed) specimens were fabricated under high laser energy densities (500, 400, and 333.33 J/mm<sup>3</sup>) and their metallurgical and mechanical properties were compared with the wrought specimen. SLMed 316L SS showed excellent printability, thereby enabling the fabrication of parts near full density. The porosity content present in the SLMed specimens was determined by both the image analysis method and Archimedes method. SLMed 316L specimens fabricated by the SLM process allowed observation of a microhardness of 253 HV<sub>1.0</sub> and achieved relative density up to 98.022%. Microstructural analysis using optical microscopy and phase composition analysis by X-ray diffraction (XRD) has been performed. Residual stresses were observed using the XRD method, and compressive stress (-68.9 MPa) was noticed in the as-printed specimen along the surface of the build direction. The microstructure of the as-built SLMed specimens consisted of a single-phase face-centered cubic solid solution with fine cellular and columnar grains along the build direction. The SLMed specimens seemed to yield better results than the wrought counterpart. IRB approval and Clinical Trial Registration Number are not applicable for this current work.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 3","pages":"383-392"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The austenitic 316L stainless steel (SS) is used extensively for marine applications as well as in construction, processing, and petrochemical industries due to its outstanding corrosion resistance properties. This study investigates the density, microhardness, and microstructural development of 316L SS samples fabricated by selective laser melting (SLM) under high laser energy densities. The selective laser melted (SLMed) specimens were fabricated under high laser energy densities (500, 400, and 333.33 J/mm3) and their metallurgical and mechanical properties were compared with the wrought specimen. SLMed 316L SS showed excellent printability, thereby enabling the fabrication of parts near full density. The porosity content present in the SLMed specimens was determined by both the image analysis method and Archimedes method. SLMed 316L specimens fabricated by the SLM process allowed observation of a microhardness of 253 HV1.0 and achieved relative density up to 98.022%. Microstructural analysis using optical microscopy and phase composition analysis by X-ray diffraction (XRD) has been performed. Residual stresses were observed using the XRD method, and compressive stress (-68.9 MPa) was noticed in the as-printed specimen along the surface of the build direction. The microstructure of the as-built SLMed specimens consisted of a single-phase face-centered cubic solid solution with fine cellular and columnar grains along the build direction. The SLMed specimens seemed to yield better results than the wrought counterpart. IRB approval and Clinical Trial Registration Number are not applicable for this current work.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.