{"title":"MetaLnc9 facilitates osteogenesis of human bone marrow mesenchymal stem cells by activating the AKT pathway.","authors":"Sijia Chang, Ziyao Zhuang, Chanyuan Jin","doi":"10.1080/03008207.2023.2232463","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim of the study: </strong>To investigate the role of MetaLnc9 in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs).</p><p><strong>Materials and methods: </strong>We used lentiviruses to knockdown or overexpress MetaLnc9 in hBMSCs. qRT-PCR was employed to determine the mRNA levels of osteogenic-related genes in transfected cells. ALP staining and activity assay, ARS staining and quantification were used to identify the degree of osteogenic differentiation. Ectopic bone formation was conducted to examine the osteogenesis of transfected cells in vivo. AKT pathway activator SC-79 and inhibitor LY294002 were used to validate the relationship between MetaLnc9 and AKT signaling pathway.</p><p><strong>Results: </strong>The expression of MetaLnc9 was significantly upregulated in the osteogenic differentiation of hBMSCs. MetaLnc9 knockdown inhibited the osteogenesis of hBMSCs, whereas overexpression of it promoted the osteogenic differentiation both in vitro and in vivo. Taking a deeper insight, we found that MetaLnc9 enhanced the osteogenic differentiation by activating AKT signaling. The inhibitor of AKT signaling LY294002 could reverse the positive effect on osteogenesis brought by MetaLnc9 overexpression, whereas the activator of AKT signaling SC-79 could reverse the negative effect caused by MetaLnc9 knockdown.</p><p><strong>Conclusion: </strong>Our works uncovered a vital role of MetaLnc9 in osteogenesis via regulating the AKT signaling pathway. [Figure: see text].</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"532-542"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2023.2232463","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim of the study: To investigate the role of MetaLnc9 in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs).
Materials and methods: We used lentiviruses to knockdown or overexpress MetaLnc9 in hBMSCs. qRT-PCR was employed to determine the mRNA levels of osteogenic-related genes in transfected cells. ALP staining and activity assay, ARS staining and quantification were used to identify the degree of osteogenic differentiation. Ectopic bone formation was conducted to examine the osteogenesis of transfected cells in vivo. AKT pathway activator SC-79 and inhibitor LY294002 were used to validate the relationship between MetaLnc9 and AKT signaling pathway.
Results: The expression of MetaLnc9 was significantly upregulated in the osteogenic differentiation of hBMSCs. MetaLnc9 knockdown inhibited the osteogenesis of hBMSCs, whereas overexpression of it promoted the osteogenic differentiation both in vitro and in vivo. Taking a deeper insight, we found that MetaLnc9 enhanced the osteogenic differentiation by activating AKT signaling. The inhibitor of AKT signaling LY294002 could reverse the positive effect on osteogenesis brought by MetaLnc9 overexpression, whereas the activator of AKT signaling SC-79 could reverse the negative effect caused by MetaLnc9 knockdown.
Conclusion: Our works uncovered a vital role of MetaLnc9 in osteogenesis via regulating the AKT signaling pathway. [Figure: see text].
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.