Weight loss increases skeletal muscle mitochondrial energy efficiency in obese mice.

Life metabolism Pub Date : 2023-04-01 Epub Date: 2023-04-04 DOI:10.1093/lifemeta/load014
Patrick J Ferrara, Marisa J Lang, Jordan M Johnson, Shinya Watanabe, Kelsey L McLaughlin, J Alan Maschek, Anthony R P Verkerke, Piyarat Siripoksup, Amandine Chaix, James E Cox, Kelsey H Fisher-Wellman, Katsuhiko Funai
{"title":"Weight loss increases skeletal muscle mitochondrial energy efficiency in obese mice.","authors":"Patrick J Ferrara, Marisa J Lang, Jordan M Johnson, Shinya Watanabe, Kelsey L McLaughlin, J Alan Maschek, Anthony R P Verkerke, Piyarat Siripoksup, Amandine Chaix, James E Cox, Kelsey H Fisher-Wellman, Katsuhiko Funai","doi":"10.1093/lifemeta/load014","DOIUrl":null,"url":null,"abstract":"<p><p>Weight loss from an overweight state is associated with a disproportionate decrease in whole-body energy expenditure that may contribute to the heightened risk for weight regain. Evidence suggests that this energetic mismatch originates from lean tissue. Although this phenomenon is well documented, the mechanisms have remained elusive. We hypothesized that increased mitochondrial energy efficiency in skeletal muscle is associated with reduced expenditure under weight loss. Wildtype (WT) male C57BL6/N mice were fed with high fat diet for 10 weeks, followed by a subset of mice that were maintained on the obesogenic diet (OB) or switched to standard chow to promote weight loss (WL) for additional 6 weeks. Mitochondrial energy efficiency was evaluated using high-resolution respirometry and fluorometry. Mass spectrometric analyses were employed to describe the mitochondrial proteome and lipidome. Weight loss promoted ~50% increase in the efficiency of oxidative phosphorylation (ATP produced per O<sub>2</sub> consumed, or P/O) in skeletal muscle. However, weight loss did not appear to induce significant changes in mitochondrial proteome, nor any changes in respiratory supercomplex formation. Instead, it accelerated the remodeling of mitochondrial cardiolipin (CL) acyl-chains to increase tetralinoleoyl CL (TLCL) content, a species of lipids thought to be functionally critical for the respiratory enzymes. We further show that lowering TLCL by deleting the CL transacylase tafazzin was sufficient to reduce skeletal muscle P/O and protect mice from diet-induced weight gain. These findings implicate skeletal muscle mitochondrial efficiency as a novel mechanism by which weight loss reduces energy expenditure in obesity.</p>","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195096/pdf/nihms-1890467.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemeta/load014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weight loss from an overweight state is associated with a disproportionate decrease in whole-body energy expenditure that may contribute to the heightened risk for weight regain. Evidence suggests that this energetic mismatch originates from lean tissue. Although this phenomenon is well documented, the mechanisms have remained elusive. We hypothesized that increased mitochondrial energy efficiency in skeletal muscle is associated with reduced expenditure under weight loss. Wildtype (WT) male C57BL6/N mice were fed with high fat diet for 10 weeks, followed by a subset of mice that were maintained on the obesogenic diet (OB) or switched to standard chow to promote weight loss (WL) for additional 6 weeks. Mitochondrial energy efficiency was evaluated using high-resolution respirometry and fluorometry. Mass spectrometric analyses were employed to describe the mitochondrial proteome and lipidome. Weight loss promoted ~50% increase in the efficiency of oxidative phosphorylation (ATP produced per O2 consumed, or P/O) in skeletal muscle. However, weight loss did not appear to induce significant changes in mitochondrial proteome, nor any changes in respiratory supercomplex formation. Instead, it accelerated the remodeling of mitochondrial cardiolipin (CL) acyl-chains to increase tetralinoleoyl CL (TLCL) content, a species of lipids thought to be functionally critical for the respiratory enzymes. We further show that lowering TLCL by deleting the CL transacylase tafazzin was sufficient to reduce skeletal muscle P/O and protect mice from diet-induced weight gain. These findings implicate skeletal muscle mitochondrial efficiency as a novel mechanism by which weight loss reduces energy expenditure in obesity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减肥可提高肥胖小鼠骨骼肌线粒体的能量效率。
超重状态下的减肥与全身能量消耗的不成比例减少有关,这可能会导致体重反弹的风险增加。有证据表明,这种能量不匹配源于瘦肉组织。尽管这一现象已被详细记录,但其机制仍难以捉摸。我们假设,骨骼肌线粒体能量效率的提高与减肥时消耗的减少有关。野生型(WT)雄性 C57BL6/N 小鼠以高脂肪饮食喂养 10 周,随后一部分小鼠继续以致肥饮食(OB)喂养,或改用标准饲料喂养以促进体重减轻(WL),再喂养 6 周。使用高分辨率呼吸测定法和荧光测定法评估线粒体能量效率。质谱分析用于描述线粒体蛋白质组和脂质组。减肥使骨骼肌的氧化磷酸化效率(每消耗 1 O2 产生 ATP,或 P/O)提高了约 50%。然而,减肥似乎并没有引起线粒体蛋白质组的显著变化,也没有引起呼吸超级复合物形成的任何变化。相反,减肥加速了线粒体心磷脂(CL)酰基链的重塑,从而增加了四亚油酰 CL(TLCL)的含量。我们进一步发现,通过删除 CL 转酰酶 tafazzin 来降低 TLCL 足以减少骨骼肌 P/O,并保护小鼠免受饮食引起的体重增加的影响。这些发现表明,骨骼肌线粒体效率是减肥减少肥胖症能量消耗的一种新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Senescent glia-bridging neuronal mitochondrial dysfunction and lipid accumulation in aging. Gut bacterial metabolism produces neuroactive steroids in pregnant women Potential therapeutic strategies for MASH: from preclinical to clinical development Immuno-electron microscopy localizes Caenorhabditis elegans vitellogenins along the classic exocytosis route Protecting liver health with microbial-derived succinylated bile acids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1