Unravelling high-temperature stability of lithium-ion battery with lithium-rich oxide cathode in localized high-concentration electrolyte

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2020-10-01 DOI:10.1016/j.powera.2020.100024
Xianhui Zhang , Hao Jia , Yaobin Xu , Lianfeng Zou , Mark H. Engelhard , Bethany E. Matthews , Chongmin Wang , Ji-Guang Zhang , Wu Xu
{"title":"Unravelling high-temperature stability of lithium-ion battery with lithium-rich oxide cathode in localized high-concentration electrolyte","authors":"Xianhui Zhang ,&nbsp;Hao Jia ,&nbsp;Yaobin Xu ,&nbsp;Lianfeng Zou ,&nbsp;Mark H. Engelhard ,&nbsp;Bethany E. Matthews ,&nbsp;Chongmin Wang ,&nbsp;Ji-Guang Zhang ,&nbsp;Wu Xu","doi":"10.1016/j.powera.2020.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium (Li)-rich manganese (Mn)-rich oxide (LMR) cathode materials, despite of the high specific capacity up to 250 mAh g<sup>−1</sup> suffer from instability of cathode/electrolyte interfacial layer at high working voltages, causing continuous voltage decay and capacity fading, especially at elevated temperatures. In various battery systems, localized high-concentration electrolytes (LHCEs) have been widely reported as a promising candidate to form effective electrode/electrolyte interphases. Here, an optimized LHCE is studied in graphite (Gr)-based full cells containing LMR cathode, being cycled at 25, 45 and 60 °C with the reference of a conventional LiPF<sub>6</sub>-based electrolyte. It is revealed that the LHCE can effectively suppress continuous electrolyte decompositions and mitigate the dissolution of Mn ions due to the formation of more protective electrode/electrolyte interphases on both anode and cathode, which, in turn, lead to significantly improved cycling stability and enhanced rate capability under the selected temperatures. The mechanistic understanding on the failure of the conventional LiPF<sub>6</sub>-containing electrolyte and the function of the LHCE in Gr||LMR cells under high temperatures provides valuable perspectives of electrolyte development for practical applications of LMR cathodes in high energy density batteries over a wide temperature range.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"5 ","pages":"Article 100024"},"PeriodicalIF":5.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100024","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266624852030024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 19

Abstract

Lithium (Li)-rich manganese (Mn)-rich oxide (LMR) cathode materials, despite of the high specific capacity up to 250 mAh g−1 suffer from instability of cathode/electrolyte interfacial layer at high working voltages, causing continuous voltage decay and capacity fading, especially at elevated temperatures. In various battery systems, localized high-concentration electrolytes (LHCEs) have been widely reported as a promising candidate to form effective electrode/electrolyte interphases. Here, an optimized LHCE is studied in graphite (Gr)-based full cells containing LMR cathode, being cycled at 25, 45 and 60 °C with the reference of a conventional LiPF6-based electrolyte. It is revealed that the LHCE can effectively suppress continuous electrolyte decompositions and mitigate the dissolution of Mn ions due to the formation of more protective electrode/electrolyte interphases on both anode and cathode, which, in turn, lead to significantly improved cycling stability and enhanced rate capability under the selected temperatures. The mechanistic understanding on the failure of the conventional LiPF6-containing electrolyte and the function of the LHCE in Gr||LMR cells under high temperatures provides valuable perspectives of electrolyte development for practical applications of LMR cathodes in high energy density batteries over a wide temperature range.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部高浓度电解液中富锂氧化物正极锂离子电池的高温稳定性研究
富锂(Li)-富锰(Mn)-氧化物(LMR)阴极材料,尽管具有高达250 mAh g−1的高比容量,但在高工作电压下,阴极/电解质界面层不稳定,导致持续的电压衰减和容量衰减,特别是在高温下。在各种电池系统中,局部高浓度电解质(LHCEs)被广泛报道为形成有效电极/电解质界面的有希望的候选者。本文在含有LMR阴极的石墨(Gr)基全电池中,以传统的lipf6基电解质为参考,在25、45和60 °C下循环,研究了优化后的LHCE。结果表明,LHCE通过在阳极和阴极上形成更多的保护电极/电解质界面,可以有效地抑制电解液的连续分解和减缓Mn离子的溶解,从而显著提高循环稳定性和在选定温度下的速率能力。对传统含lipf6电解质在高温下的失效机理和LHCE在Gr| LMR电池中的功能的理解,为LMR阴极在高能量密度电池中在宽温度范围内的实际应用提供了有价值的电解质开发前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1