{"title":"StoneNet: An Efficient Lightweight Model Based on Depthwise Separable Convolutions for Kidney Stone Detection from CT Images.","authors":"Sohaib Asif, Ming Zhao, Xuehan Chen, Yusen Zhu","doi":"10.1007/s12539-023-00578-8","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney stone disease is one of the most common and serious health problems in much of the world, leading to many hospitalizations with severe pain. Detecting small stones is difficult and time-consuming, so an early diagnosis of kidney disease is needed to prevent the loss of kidney failure. Recent advances in artificial intelligence (AI) found to be very successful in the diagnosis of various diseases in the biomedical field. However, existing models using deep networks have several problems, such as high computational cost, long training time, and huge parameters. Providing a low-cost solution for diagnosing kidney stones in a medical decision support system is of paramount importance. Therefore, in this study, we propose \"StoneNet\", a lightweight and high-performance model for the detection of kidney stones based on MobileNet using depthwise separable convolution. The proposed model includes a combination of global average pooling (GAP), batch normalization, dropout layer, and dense layers. Our study shows that using GAP instead of flattening layers greatly improves the robustness of the model by significantly reducing the parameters. The developed model is benchmarked against four pre-trained models as well as the state-of-the-art heavy model. The results show that the proposed model can achieve the highest accuracy of 97.98%, and only requires training and testing time of 996.88 s and 14.62 s. Several parameters, such as different batch sizes and optimizers, were considered to validate the proposed model. The proposed model is computationally faster and provides optimal performance than other considered models. Experiments on a large kidney dataset of 1799 CT images show that StoneNet has superior performance in terms of higher accuracy and lower complexity. The proposed model can assist the radiologist in faster diagnosis of kidney stones and has great potential for deployment in real-time applications.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"633-652"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00578-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kidney stone disease is one of the most common and serious health problems in much of the world, leading to many hospitalizations with severe pain. Detecting small stones is difficult and time-consuming, so an early diagnosis of kidney disease is needed to prevent the loss of kidney failure. Recent advances in artificial intelligence (AI) found to be very successful in the diagnosis of various diseases in the biomedical field. However, existing models using deep networks have several problems, such as high computational cost, long training time, and huge parameters. Providing a low-cost solution for diagnosing kidney stones in a medical decision support system is of paramount importance. Therefore, in this study, we propose "StoneNet", a lightweight and high-performance model for the detection of kidney stones based on MobileNet using depthwise separable convolution. The proposed model includes a combination of global average pooling (GAP), batch normalization, dropout layer, and dense layers. Our study shows that using GAP instead of flattening layers greatly improves the robustness of the model by significantly reducing the parameters. The developed model is benchmarked against four pre-trained models as well as the state-of-the-art heavy model. The results show that the proposed model can achieve the highest accuracy of 97.98%, and only requires training and testing time of 996.88 s and 14.62 s. Several parameters, such as different batch sizes and optimizers, were considered to validate the proposed model. The proposed model is computationally faster and provides optimal performance than other considered models. Experiments on a large kidney dataset of 1799 CT images show that StoneNet has superior performance in terms of higher accuracy and lower complexity. The proposed model can assist the radiologist in faster diagnosis of kidney stones and has great potential for deployment in real-time applications.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.