Nikolay Aleexevich Korenevskiy, Alexander V Bykov, Riad Taha Al-Kasasbeh, Moaath Musa Al-Smadi, Altyn A Aikeyeva, Mohammad Al-Jund, Etab T Al-Kasasbeh, Sofia N Rodionova, Maksim Ilyash, Ashraf Shaqadan
{"title":"Development of a Fuzzy Diagnostic Model of Ischemic Disease of the Lower Limbs for Different Stages of Patient Management.","authors":"Nikolay Aleexevich Korenevskiy, Alexander V Bykov, Riad Taha Al-Kasasbeh, Moaath Musa Al-Smadi, Altyn A Aikeyeva, Mohammad Al-Jund, Etab T Al-Kasasbeh, Sofia N Rodionova, Maksim Ilyash, Ashraf Shaqadan","doi":"10.1615/CritRevBiomedEng.2022044974","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic disease has severe impact on patients which makes accurate diagnosis vital for health protection. Improving the quality of prediction of patients with ischemic extremity disease by using hybrid fuzzy model allows for early and accurate prognosis of the development of the disease at various stages. The prediction of critical ischemia of lower extremity (CLI) at various disease stages is complex problem due to inter-related factors. We developed hybrid fuzzy decision rules to classify ischemic severity using clinical thinking (natural intelligence) with artificial intelligence, which allows achieving a new quality in solving complex systemic problems and is innovative. In this study mathematical model was developed to classify the risk level of CLI into: subcritical ischemia, favorable outcome, questionable outcome, and unfavorable outcome. The prognosis is made using such complex indicators as confidence that the patient will develop gangrene of the lower extremity (unfavorable outcome), complex coefficient of variability, and reversibility of the ischemic process. Model accuracy was calculated using representative control samples that showed high diagnostic accuracy and specificity characterizing the quality of prediction are 0.9 and higher, which makes it possible to recommend their use in medical practice.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"50 4","pages":"13-30"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2022044974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Ischemic disease has severe impact on patients which makes accurate diagnosis vital for health protection. Improving the quality of prediction of patients with ischemic extremity disease by using hybrid fuzzy model allows for early and accurate prognosis of the development of the disease at various stages. The prediction of critical ischemia of lower extremity (CLI) at various disease stages is complex problem due to inter-related factors. We developed hybrid fuzzy decision rules to classify ischemic severity using clinical thinking (natural intelligence) with artificial intelligence, which allows achieving a new quality in solving complex systemic problems and is innovative. In this study mathematical model was developed to classify the risk level of CLI into: subcritical ischemia, favorable outcome, questionable outcome, and unfavorable outcome. The prognosis is made using such complex indicators as confidence that the patient will develop gangrene of the lower extremity (unfavorable outcome), complex coefficient of variability, and reversibility of the ischemic process. Model accuracy was calculated using representative control samples that showed high diagnostic accuracy and specificity characterizing the quality of prediction are 0.9 and higher, which makes it possible to recommend their use in medical practice.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.