Progress in Excision Methods of Bone Materials.

Dongxue Liu, Yihua Feng, Fei Wang, Changcai Qin, Zefei Zhang, Yanbin Shi
{"title":"Progress in Excision Methods of Bone Materials.","authors":"Dongxue Liu,&nbsp;Yihua Feng,&nbsp;Fei Wang,&nbsp;Changcai Qin,&nbsp;Zefei Zhang,&nbsp;Yanbin Shi","doi":"10.1615/CritRevBiomedEng.2022045860","DOIUrl":null,"url":null,"abstract":"<p><p>Bone resection is a common technique in modern surgery, which can be divided into contact (such as mechanical osteotomy and ultrasonic osteotomy) and non-contact (such as laser osteotomy). Irrespective of the excision method, it causes processing damage to natural bone material, thus affecting bone healing. To reduce the machining damage in bone resection, different machining variables (cutting fluid temperature, feed rate, rotational speed, and ultrasonic frequency) were considered to explore the selection of various cutting conditions. This paper reviews the excision of natural bone materials including mechanical osteotomy, laser osteotomy, and ultrasonic osteotomy, especially traditional drilling and ultrasonic cutting, which represent the traditional and prospective methods of bone excision technology, respectively. Finally, the differences between methods are emphasized and the future trends in osteotomy technology and condition control during osteotomy are analyzed.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"50 4","pages":"31-49"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2022045860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Bone resection is a common technique in modern surgery, which can be divided into contact (such as mechanical osteotomy and ultrasonic osteotomy) and non-contact (such as laser osteotomy). Irrespective of the excision method, it causes processing damage to natural bone material, thus affecting bone healing. To reduce the machining damage in bone resection, different machining variables (cutting fluid temperature, feed rate, rotational speed, and ultrasonic frequency) were considered to explore the selection of various cutting conditions. This paper reviews the excision of natural bone materials including mechanical osteotomy, laser osteotomy, and ultrasonic osteotomy, especially traditional drilling and ultrasonic cutting, which represent the traditional and prospective methods of bone excision technology, respectively. Finally, the differences between methods are emphasized and the future trends in osteotomy technology and condition control during osteotomy are analyzed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨材料切除方法研究进展。
骨切除术是现代外科手术中常见的一种技术,可分为接触式(如机械截骨、超声截骨)和非接触式(如激光截骨)。无论采用何种切除方法,都会对天然骨材料造成加工损伤,从而影响骨愈合。为了减少骨切除的加工损伤,考虑了不同的加工变量(切削液温度、进给速度、转速和超声频率),探讨了各种切削条件的选择。本文综述了天然骨材料的切除,包括机械截骨、激光截骨和超声截骨,特别是传统的钻孔和超声切割,它们分别代表了传统的骨切除技术和有前景的骨切除技术。最后,强调了各种方法的区别,并分析了截骨技术和截骨过程中条件控制的未来发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Biomedical Engineering
Critical Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
1.80
自引率
0.00%
发文量
25
期刊介绍: Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.
期刊最新文献
A Review on Implantable Neuroelectrodes. Using Fuzzy Mathematical Model in the Differential Diagnosis of Pancreatic Lesions Using Ultrasonography and Echographic Texture Analysis. Has Machine Learning Enhanced the Diagnosis of Autism Spectrum Disorder? Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases. Engineers in Medicine: Foster Innovation by Traversing Boundaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1