Non-canonical Wnt signaling in the eye

IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Progress in Retinal and Eye Research Pub Date : 2023-07-01 DOI:10.1016/j.preteyeres.2022.101149
Ruchi Shah , Cynthia Amador , Steven T. Chun , Sean Ghiam , Mehrnoosh Saghizadeh , Andrei A. Kramerov , Alexander V. Ljubimov
{"title":"Non-canonical Wnt signaling in the eye","authors":"Ruchi Shah ,&nbsp;Cynthia Amador ,&nbsp;Steven T. Chun ,&nbsp;Sean Ghiam ,&nbsp;Mehrnoosh Saghizadeh ,&nbsp;Andrei A. Kramerov ,&nbsp;Alexander V. Ljubimov","doi":"10.1016/j.preteyeres.2022.101149","DOIUrl":null,"url":null,"abstract":"<div><p>Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209355/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946222001094","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
眼睛中的非规范Wnt信号
Wnt信号包括一组复杂的信号转导通路,在细胞增殖、分化和发育过程中凋亡,以及干细胞维持和成体组织稳态中发挥关键作用。Wnt通路分为两大类,典型(β-catenin依赖)和非典型(β-catenin独立)。大多数先前的眼睛研究都集中在典型的Wnt信号上,而非典型信号的作用仍然知之甚少。此外,眼睛中规范和非规范Wnt信号之间的串扰几乎没有被探索过。在这篇综述中,我们概述了眼部非典型Wnt信号的现有数据,包括不同眼隔间的发育和功能方面。我们还讨论了该信号在各种眼部疾病中的重要变化,如圆锥角膜、无虹膜相关性角膜病变、糖尿病、年龄相关性黄斑变性、视神经损伤、病理性血管生成、小梁网和结膜细胞异常以及角膜缘干细胞缺乏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
34.10
自引率
5.10%
发文量
78
期刊介绍: Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists. The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.
期刊最新文献
The role of CFTR in the eye, and the effect of early highly effective modulator treatment for cystic fibrosis on eye health. Editorial Board Optical coherence tomography angiography of the retina and choroid in systemic diseases The AI revolution in glaucoma: Bridging challenges with opportunities Value proposition of retinal imaging in Alzheimer's disease screening: A review of eight evolving trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1