首页 > 最新文献

Progress in Retinal and Eye Research最新文献

英文 中文
The role of CFTR in the eye, and the effect of early highly effective modulator treatment for cystic fibrosis on eye health. CFTR 在眼睛中的作用,以及早期高效调节剂治疗囊性纤维化对眼睛健康的影响。
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-09-06 DOI: 10.1016/j.preteyeres.2024.101299
Elena K Schneider-Futschik, Yimin Zhu, Danni Li, Mark D Habgood, Bao N Nguyen, Ines Pankonien, Margarida Amaral, Laura E Downie, Holly R Chinnery

Cystic fibrosis transmembrane conductance regulator (CFTR) is a protein that plays a crucial role in various human organs, including the respiratory and digestive systems. Dysfunctional CFTR is the key variant of the lethal genetic disorder, cystic fibrosis (CF). In the past decade, highly effective CFTR modulator therapies, including elexacaftor-tezacaftor-ivacaftor, have revolutionised CF management by correcting the underlying molecular defect to improve patient outcomes and life expectancy. Despite demonstrating multiorgan efficacy, clinical trials have largely overlooked the potential for ocular disturbances with CFTR modulator therapy, with the exception of a few case studies reporting the presence of lens pathologies in young children on CFTR modulators, and in breastfed infants born to individuals who were on CFTR modulator treatment during pregnancy. CFTR is present in multiple tissues during embryonic development, including the eye, and its expression can be influenced by genetic and environmental factors. This review summarises the possible role of CFTR in the developing eye, and the potential impact of CFTR on eye function and vision later in life. This information provides a framework for understanding the use and possible effects of CFTR-modulating therapeutics in the context of eye health, including the potential to leverage the eye for non-invasive and accessible diagnostic and monitoring capabilities in patients with CF.

囊性纤维化跨膜传导调节因子(CFTR)是一种蛋白质,在呼吸系统和消化系统等多个人体器官中发挥着至关重要的作用。CFTR 功能失调是致命性遗传疾病囊性纤维化(CF)的关键变体。在过去十年中,包括 elexacaftor-tezacaftor-ivacaftor 在内的高效 CFTR 调节器疗法通过纠正潜在的分子缺陷,改善了患者的预后和预期寿命,从而彻底改变了 CF 的治疗方法。尽管CFTR调节剂具有多器官疗效,但临床试验在很大程度上忽视了CFTR调节剂治疗可能导致的眼部病变,只有少数病例研究报告了服用CFTR调节剂的幼儿和孕期服用CFTR调节剂的母乳喂养婴儿出现晶状体病变。在胚胎发育过程中,CFTR 存在于包括眼睛在内的多种组织中,其表达会受到遗传和环境因素的影响。本综述总结了 CFTR 在眼球发育过程中可能发挥的作用,以及 CFTR 对日后眼球功能和视力的潜在影响。这些信息提供了一个框架,有助于了解在眼部健康方面使用调节 CFTR 的疗法及其可能产生的影响,包括利用眼部对 CF 患者进行非侵入性、无障碍诊断和监测的潜力。
{"title":"The role of CFTR in the eye, and the effect of early highly effective modulator treatment for cystic fibrosis on eye health.","authors":"Elena K Schneider-Futschik, Yimin Zhu, Danni Li, Mark D Habgood, Bao N Nguyen, Ines Pankonien, Margarida Amaral, Laura E Downie, Holly R Chinnery","doi":"10.1016/j.preteyeres.2024.101299","DOIUrl":"https://doi.org/10.1016/j.preteyeres.2024.101299","url":null,"abstract":"<p><p>Cystic fibrosis transmembrane conductance regulator (CFTR) is a protein that plays a crucial role in various human organs, including the respiratory and digestive systems. Dysfunctional CFTR is the key variant of the lethal genetic disorder, cystic fibrosis (CF). In the past decade, highly effective CFTR modulator therapies, including elexacaftor-tezacaftor-ivacaftor, have revolutionised CF management by correcting the underlying molecular defect to improve patient outcomes and life expectancy. Despite demonstrating multiorgan efficacy, clinical trials have largely overlooked the potential for ocular disturbances with CFTR modulator therapy, with the exception of a few case studies reporting the presence of lens pathologies in young children on CFTR modulators, and in breastfed infants born to individuals who were on CFTR modulator treatment during pregnancy. CFTR is present in multiple tissues during embryonic development, including the eye, and its expression can be influenced by genetic and environmental factors. This review summarises the possible role of CFTR in the developing eye, and the potential impact of CFTR on eye function and vision later in life. This information provides a framework for understanding the use and possible effects of CFTR-modulating therapeutics in the context of eye health, including the potential to leverage the eye for non-invasive and accessible diagnostic and monitoring capabilities in patients with CF.</p>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical coherence tomography angiography of the retina and choroid in systemic diseases 系统性疾病中视网膜和脉络膜的光学相干断层血管造影。
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-08-30 DOI: 10.1016/j.preteyeres.2024.101292

Optical coherence tomography angiography (OCTA) has transformed ocular vascular imaging, revealing microvascular changes linked to various systemic diseases. This review explores its applications in diabetes, hypertension, cardiovascular diseases, and neurodegenerative diseases. While OCTA provides a valuable window into the body's microvasculature, interpreting the findings can be complex. Additionally, challenges exist due to the relative non-specificity of its findings where changes observed in OCTA might not be unique to a specific disease, variations between OCTA machines, the lack of a standardized normative database for comparison, and potential image artifacts. Despite these limitations, OCTA holds immense potential for the future. The review highlights promising advancements like quantitative analysis of OCTA images, integration of artificial intelligence for faster and more accurate interpretation, and multi-modal imaging combining OCTA with other techniques for a more comprehensive characterization of the ocular vasculature. Furthermore, OCTA's potential future role in personalized medicine, enabling tailored treatment plans based on individual OCTA findings, community screening programs for early disease detection, and longitudinal studies tracking disease progression over time is also discussed. In conclusion, OCTA presents a significant opportunity to improve our understanding and management of systemic diseases. Addressing current limitations and pursuing these exciting future directions can solidify OCTA as an indispensable tool for diagnosis, monitoring disease progression, and potentially guiding treatment decisions across various systemic health conditions.

光学相干断层血管成像(OCTA)改变了眼部血管成像,揭示了与各种系统性疾病相关的微血管变化。这篇综述探讨了它在糖尿病、高血压、心血管疾病和神经退行性疾病中的应用。虽然 OCTA 为观察人体微血管提供了一个宝贵的窗口,但解释这些发现可能很复杂。此外,由于 OCTA 研究结果的相对非特异性(在 OCTA 中观察到的变化可能并非特定疾病所独有)、OCTA 机器之间的差异、缺乏用于比较的标准化标准数据库以及潜在的图像伪影等原因,OCTA 的研究也面临着挑战。尽管存在这些局限性,OCTA 在未来仍有巨大潜力。这篇综述强调了一些很有前景的进展,如对 OCTA 图像进行定量分析,整合人工智能以实现更快、更准确的解读,以及将 OCTA 与其他技术相结合的多模式成像,以更全面地描述眼部血管的特征。此外,还讨论了 OCTA 未来在个性化医疗中的潜在作用,即根据个人的 OCTA 检查结果、社区早期疾病检测筛查计划和随时间推移跟踪疾病进展的纵向研究,提供量身定制的治疗方案。总之,OCTA 为提高我们对全身性疾病的认识和管理提供了一个重要机会。解决目前的局限性并寻求这些令人兴奋的未来发展方向,可以使 OCTA 成为诊断、监测疾病进展和指导各种系统性健康问题治疗决策的不可或缺的工具。
{"title":"Optical coherence tomography angiography of the retina and choroid in systemic diseases","authors":"","doi":"10.1016/j.preteyeres.2024.101292","DOIUrl":"10.1016/j.preteyeres.2024.101292","url":null,"abstract":"<div><p>Optical coherence tomography angiography (OCTA) has transformed ocular vascular imaging, revealing microvascular changes linked to various systemic diseases. This review explores its applications in diabetes, hypertension, cardiovascular diseases, and neurodegenerative diseases. While OCTA provides a valuable window into the body's microvasculature, interpreting the findings can be complex. Additionally, challenges exist due to the relative non-specificity of its findings where changes observed in OCTA might not be unique to a specific disease, variations between OCTA machines, the lack of a standardized normative database for comparison, and potential image artifacts. Despite these limitations, OCTA holds immense potential for the future. The review highlights promising advancements like quantitative analysis of OCTA images, integration of artificial intelligence for faster and more accurate interpretation, and multi-modal imaging combining OCTA with other techniques for a more comprehensive characterization of the ocular vasculature. Furthermore, OCTA's potential future role in personalized medicine, enabling tailored treatment plans based on individual OCTA findings, community screening programs for early disease detection, and longitudinal studies tracking disease progression over time is also discussed. In conclusion, OCTA presents a significant opportunity to improve our understanding and management of systemic diseases. Addressing current limitations and pursuing these exciting future directions can solidify OCTA as an indispensable tool for diagnosis, monitoring disease progression, and potentially guiding treatment decisions across various systemic health conditions.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350946224000570/pdfft?md5=8bcc70f21512e907c81bbda35249423b&pid=1-s2.0-S1350946224000570-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The AI revolution in glaucoma: Bridging challenges with opportunities 青光眼的人工智能革命:挑战与机遇并存。
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-08-24 DOI: 10.1016/j.preteyeres.2024.101291

Recent advancements in artificial intelligence (AI) herald transformative potentials for reshaping glaucoma clinical management, improving screening efficacy, sharpening diagnosis precision, and refining the detection of disease progression. However, incorporating AI into healthcare usages faces significant hurdles in terms of developing algorithms and putting them into practice. When creating algorithms, issues arise due to the intensive effort required to label data, inconsistent diagnostic standards, and a lack of thorough testing, which often limits the algorithms' widespread applicability. Additionally, the “black box” nature of AI algorithms may cause doctors to be wary or skeptical. When it comes to using these tools, challenges include dealing with lower-quality images in real situations and the systems' limited ability to work well with diverse ethnic groups and different diagnostic equipment. Looking ahead, new developments aim to protect data privacy through federated learning paradigms, improving algorithm generalizability by diversifying input data modalities, and augmenting datasets with synthetic imagery. The integration of smartphones appears promising for using AI algorithms in both clinical and non-clinical settings. Furthermore, bringing in large language models (LLMs) to act as interactive tool in medicine may signify a significant change in how healthcare will be delivered in the future. By navigating through these challenges and leveraging on these as opportunities, the field of glaucoma AI will not only have improved algorithmic accuracy and optimized data integration but also a paradigmatic shift towards enhanced clinical acceptance and a transformative improvement in glaucoma care.

人工智能(AI)的最新进展预示着重塑青光眼临床管理、提高筛查效率、提高诊断精确度和完善疾病进展检测的变革潜力。然而,要将人工智能应用于医疗保健领域,在开发算法和将其付诸实践方面面临着巨大的障碍。在创建算法时,由于需要花费大量精力标注数据、诊断标准不一致以及缺乏全面测试等原因,往往会限制算法的广泛适用性。此外,人工智能算法的 "黑箱 "性质可能会引起医生的警惕或怀疑。在使用这些工具时,面临的挑战包括在真实情况下处理质量较低的图像,以及系统与不同种族群体和不同诊断设备良好协作的能力有限。展望未来,新的发展目标是通过联合学习范例保护数据隐私,通过输入数据模式的多样化提高算法的通用性,以及通过合成图像增强数据集。在临床和非临床环境中使用人工智能算法时,整合智能手机似乎大有可为。此外,引入大型语言模型(LLMs)作为医疗领域的互动工具,可能标志着未来医疗服务方式的重大变革。通过应对这些挑战并将其作为机遇加以利用,青光眼人工智能领域不仅能提高算法的准确性和优化数据整合,还能实现范式转变,提高临床接受度,实现青光眼护理的变革性改善。
{"title":"The AI revolution in glaucoma: Bridging challenges with opportunities","authors":"","doi":"10.1016/j.preteyeres.2024.101291","DOIUrl":"10.1016/j.preteyeres.2024.101291","url":null,"abstract":"<div><p>Recent advancements in artificial intelligence (AI) herald transformative potentials for reshaping glaucoma clinical management, improving screening efficacy, sharpening diagnosis precision, and refining the detection of disease progression. However, incorporating AI into healthcare usages faces significant hurdles in terms of developing algorithms and putting them into practice. When creating algorithms, issues arise due to the intensive effort required to label data, inconsistent diagnostic standards, and a lack of thorough testing, which often limits the algorithms' widespread applicability. Additionally, the “black box” nature of AI algorithms may cause doctors to be wary or skeptical. When it comes to using these tools, challenges include dealing with lower-quality images in real situations and the systems' limited ability to work well with diverse ethnic groups and different diagnostic equipment. Looking ahead, new developments aim to protect data privacy through federated learning paradigms, improving algorithm generalizability by diversifying input data modalities, and augmenting datasets with synthetic imagery. The integration of smartphones appears promising for using AI algorithms in both clinical and non-clinical settings. Furthermore, bringing in large language models (LLMs) to act as interactive tool in medicine may signify a significant change in how healthcare will be delivered in the future. By navigating through these challenges and leveraging on these as opportunities, the field of glaucoma AI will not only have improved algorithmic accuracy and optimized data integration but also a paradigmatic shift towards enhanced clinical acceptance and a transformative improvement in glaucoma care.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Value proposition of retinal imaging in Alzheimer's disease screening: A review of eight evolving trends 视网膜成像在阿尔茨海默病筛查中的价值主张:八大演变趋势回顾
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-08-22 DOI: 10.1016/j.preteyeres.2024.101290

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Current diagnostic modalities of AD generally focus on detecting the presence of amyloid β and tau protein in the brain (for example, positron emission tomography [PET] and cerebrospinal fluid testing), but these are limited by their high cost, invasiveness, and lack of expertise. Retinal imaging exhibits potential in AD screening and risk stratification, as the retina provides a platform for the optical visualization of the central nervous system in vivo, with vascular and neuronal changes that mirror brain pathology.

Given the paradigm shift brought by advances in artificial intelligence and the emergence of disease-modifying therapies, this article aims to summarize and review the current literature to highlight 8 trends in an evolving landscape regarding the role and potential value of retinal imaging in AD screening.

阿尔茨海默病(AD)是全球痴呆症的主要病因。目前的阿尔茨海默病诊断方法一般侧重于检测大脑中是否存在淀粉样β和tau蛋白(例如正电子发射断层扫描和脑脊液检测),但这些方法因成本高、侵入性大和缺乏专业知识而受到限制。视网膜成像为体内中枢神经系统的光学可视化提供了一个平台,其血管和神经元的变化反映了大脑的病理变化,因此在注意力缺失症筛查和风险分层方面具有潜力。鉴于人工智能的进步和疾病修饰疗法的出现带来的范式转变,本文旨在总结和回顾当前的文献,突出视网膜成像在AD筛查中的作用和潜在价值方面不断发展的8大趋势。
{"title":"Value proposition of retinal imaging in Alzheimer's disease screening: A review of eight evolving trends","authors":"","doi":"10.1016/j.preteyeres.2024.101290","DOIUrl":"10.1016/j.preteyeres.2024.101290","url":null,"abstract":"<div><p>Alzheimer's disease (AD) is the leading cause of dementia worldwide. Current diagnostic modalities of AD generally focus on detecting the presence of amyloid β and tau protein in the brain (for example, positron emission tomography [PET] and cerebrospinal fluid testing), but these are limited by their high cost, invasiveness, and lack of expertise. Retinal imaging exhibits potential in AD screening and risk stratification, as the retina provides a platform for the optical visualization of the central nervous system <em>in vivo</em>, with vascular and neuronal changes that mirror brain pathology.</p><p>Given the paradigm shift brought by advances in artificial intelligence and the emergence of disease-modifying therapies, this article aims to summarize and review the current literature to highlight 8 trends in an evolving landscape regarding the role and potential value of retinal imaging in AD screening.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic therapies and potential therapeutic applications of CRISPR activators in the eye CRISPR 激活剂在眼科领域的遗传疗法和潜在治疗应用。
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-08-08 DOI: 10.1016/j.preteyeres.2024.101289

Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.

传统的补充基因疗法只能治疗功能缺失性疾病,而且受到病毒包装大小的限制,无法治疗大基因。CRISPR/Cas 的发现带来了基因治疗领域的范式转变,有望实现精确的基因编辑,从而扩大可治疗疾病的范围。CRISPR/Cas 的最初用途主要集中在利用 Cas 内切酶触发靶细胞内源性非同源末端连接,从而对异常变异进行基因编辑或沉默。随后,该技术不断发展,对 Cas 酶甚至其引导 RNA 进行了修改,从而产生了更有效的碱基和质粒编辑工具。CRISPR/Cas 技术本身的进一步发展扩大了其功能范围,从定向编辑到可编程转录激活,将治疗重点转移到精确的内源性基因激活或上调,并有可能进行表观遗传修饰。利用这一平台进行的体内实验证明,CRISPR-激活剂(CRISPRa)具有治疗各种功能缺失性疾病和再生医学的潜力,突出了其克服传统策略局限性的多功能性。这篇综述总结了CRISPRa平台的分子机制、这一技术目前在体内的应用,并讨论了这一疗法在转化障碍方面的潜在解决方案,重点关注眼科疾病。
{"title":"Genetic therapies and potential therapeutic applications of CRISPR activators in the eye","authors":"","doi":"10.1016/j.preteyeres.2024.101289","DOIUrl":"10.1016/j.preteyeres.2024.101289","url":null,"abstract":"<div><p>Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. <em>In vivo</em> experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology <em>in vivo</em>, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms 先天性前节眼病:基因型与表型的相关性和新出现的机制。
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-08-02 DOI: 10.1016/j.preteyeres.2024.101288

Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.

眼球前段的发育需要在多种遗传因素的作用下,各组织之间依次进行相互影响。其中任何一个过程的中断都会导致受影响组织出现先天性异常,从而引发前段疾病(ASD),包括无眼球症、阿克森菲尔德-里格异常、先天性角膜翳(彼得斯异常、平面角膜、先天性原发性无眼球症)和原发性先天性青光眼。目前对 ASD 遗传因素的了解仍不全面,大约 50%的患者会得到遗传诊断。虽然有些基因与特定的临床诊断密切相关,但大多数已知的因素都与千差万别的表型表现有关,其中 FOXC1、CYP1B1 和 PITX2 的致病变异会导致最广泛的 ASD 病症。本综述讨论了典型的临床表现,包括各种形式的 ASD 的相关系统特征;与 25 种 ASD 因子(包括新发现的基因)相关的最新功能数据和基因型与表型的相关性;有希望的新候选基因;以及针对这些复杂病症的现有和新兴治疗方法。ASD 遗传学的最新进展包括:确定了几种因素的表型扩展、发现了一些基因的多种遗传模式以及新的机制,包括越来越多的非编码变异和影响特定结构域/残基并需要进一步研究的等位基因。
{"title":"Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms","authors":"","doi":"10.1016/j.preteyeres.2024.101288","DOIUrl":"10.1016/j.preteyeres.2024.101288","url":null,"abstract":"<div><p>Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in <em>FOXC1, CYP1B1,</em> and <em>PITX2</em> associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro and ex vivo models of microbial keratitis: Present and future 微生物角膜炎的体外和体内模型:现在与未来。
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-07-14 DOI: 10.1016/j.preteyeres.2024.101287

Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK.

However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.

微生物性角膜炎(MK)是由细菌、真菌、寄生虫或病毒引起的角膜感染。微生物性角膜炎发病率高,是全球第五大致盲原因。目前迫切需要更好地了解发病机理,以便开发新型诊断和治疗方法,改善患者的预后。为了实现这一目标,已经开发并实施了许多体外、体外和体内 MK 模型。在此,我们介绍了目前的体外和体内 MK 模型系统,研究了它们不同的设计、产出、报告标准以及优势和局限性。主要的局限性包括:这些 MK 模型相对简单,无法研究免疫反应,而免疫反应被广泛认为在 MK 发病机制中起着重要作用。因此,对 MK 这方面的研究仍然依赖于体内模型。然而,展望未来,我们将从更广泛的角膜疾病建模领域中汲取营养,例如,利用生物反应器和芯片上器官中观察到的三维共培养模型和动态环境。这些方法在 MK 研究中仍有待探索,但这些方法的采用将进一步推动 MK 角膜建模领域的发展,特别是重点加入免疫成分,我们预计这将更好地再现发病机制并产生新的发现,从而有助于提高 MK 的疗效。
{"title":"In vitro and ex vivo models of microbial keratitis: Present and future","authors":"","doi":"10.1016/j.preteyeres.2024.101287","DOIUrl":"10.1016/j.preteyeres.2024.101287","url":null,"abstract":"<div><p>Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many <em>in vitro, ex vivo</em> and <em>in vivo</em> MK models have been developed and implemented to meet this aim. Here, we present current <em>in vitro</em> and <em>ex vivo</em> MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on <em>in vivo</em> models to study this aspect of MK.</p><p>However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350946224000521/pdfft?md5=38c612dd2008abacdf08a18923b23280&pid=1-s2.0-S1350946224000521-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs’ endothelial corneal dystrophy 探索将单细胞 RNA 测序作为福氏内皮性角膜营养不良症临床治疗的决策工具。
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-07-03 DOI: 10.1016/j.preteyeres.2024.101286
Gink N. Yang , Yu B.Y. Sun , Philip Ke Roberts , Hothri Moka , Min K. Sung , Jesse Gardner-Russell , Layal El Wazan , Bridget Toussaint , Satheesh Kumar , Heather Machin , Gregory J. Dusting , Geraint J. Parfitt , Kathryn Davidson , Elaine W. Chong , Karl D. Brown , Jose M. Polo , Mark Daniell

Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs’ Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.

单细胞 RNA 测序(scRNA-seq)能够识别许多组织和疾病中的新型基因特征和细胞异质性。在此,我们回顾了该技术在福氏内皮性角膜营养不良症(FECD)中的应用。FECD 是全球最常见的角膜内皮移植适应症。福氏角膜内皮营养不良症具有遗传异质性,可能是常染色体显性遗传,也可能是散发性遗传,而且进展速度各不相同,因此治疗难度很大。单细胞 RNA 测序发现了几种 FECD 亚型,每种亚型都有相关的基因特征和细胞异质性。目前,FECD 的治疗方法主要是外科手术,手术后使用各种 Rho 激酶(ROCK)抑制剂来促进内皮细胞的新陈代谢和增殖。一系列针对 FECD 的新兴疗法,包括细胞疗法、基因疗法、组织工程支架和药物疗法,都已进入临床前和临床试验阶段。与基于临床表现和家族史的传统疾病管理方法不同,利用基于 scRNA-seq 的精准医疗来靶向 FECD 有可能准确定位疾病的亚型、机制、分期和严重程度,并帮助临床医生做出手术和治疗应用的最佳决策。在这篇综述中,我们首先讨论了在 FECD 临床诊断中使用 scRNA-seq 的可行性和潜力,重点介绍了 FECD 最新临床治疗方法和新兴疗法的进展,整合了 scRNA-seq 结果和 FECD 患者的临床记录,并讨论了应用替代疗法临床管理这些病例的潜力。
{"title":"Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs’ endothelial corneal dystrophy","authors":"Gink N. Yang ,&nbsp;Yu B.Y. Sun ,&nbsp;Philip Ke Roberts ,&nbsp;Hothri Moka ,&nbsp;Min K. Sung ,&nbsp;Jesse Gardner-Russell ,&nbsp;Layal El Wazan ,&nbsp;Bridget Toussaint ,&nbsp;Satheesh Kumar ,&nbsp;Heather Machin ,&nbsp;Gregory J. Dusting ,&nbsp;Geraint J. Parfitt ,&nbsp;Kathryn Davidson ,&nbsp;Elaine W. Chong ,&nbsp;Karl D. Brown ,&nbsp;Jose M. Polo ,&nbsp;Mark Daniell","doi":"10.1016/j.preteyeres.2024.101286","DOIUrl":"10.1016/j.preteyeres.2024.101286","url":null,"abstract":"<div><p>Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs’ Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's disease pathophysiology in the Retina. 视网膜中的阿尔茨海默病病理生理学。
IF 18.6 1区 医学 Q1 OPHTHALMOLOGY Pub Date : 2024-07-01 Epub Date: 2024-05-15 DOI: 10.1016/j.preteyeres.2024.101273
Bhakta Prasad Gaire, Yosef Koronyo, Dieu-Trang Fuchs, Haoshen Shi, Altan Rentsendorj, Ron Danziger, Jean-Philippe Vit, Nazanin Mirzaei, Jonah Doustar, Julia Sheyn, Harald Hampel, Andrea Vergallo, Miyah R Davis, Ousman Jallow, Filippo Baldacci, Steven R Verdooner, Ernesto Barron, Mehdi Mirzaei, Vivek K Gupta, Stuart L Graham, Mourad Tayebi, Roxana O Carare, Alfredo A Sadun, Carol A Miller, Oana M Dumitrascu, Shouri Lahiri, Liang Gao, Keith L Black, Maya Koronyo-Hamaoui

The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.

视网膜是一种新兴的中枢神经系统靶点,可用于阿尔茨海默病(AD)的潜在无创诊断和追踪。研究已在阿尔茨海默病患者和动物模型的视网膜中发现了阿尔茨海默病的病理特征,包括淀粉样β蛋白(Aβ)沉积和 tau 蛋白异构体异常。此外,在轻度认知障碍和 AD 痴呆症患者的视网膜中也发现了血管结构和功能异常,如血流量减少、血管 Aβ 沉积、血液-视网膜屏障损伤,以及炎症和神经变性。组织学、生物化学和临床研究表明,视网膜和大脑中的 AD 病变的性质和严重程度是一致的。蛋白质组学分析表明,AD 患者视网膜和大脑中的蛋白质和生物通路的失调模式相似,炎症和神经退行性过程增强,氧化磷酸化受损,线粒体功能障碍。值得注意的是,研究性成像技术现在可以检测到 AD 特异性淀粉样蛋白沉积,以及在世 AD 患者视网膜中的血管病变和神经变性,这表明不同疾病阶段的改变以及与大脑病理学的联系。光学相干断层扫描(OCT)、OCT 血管造影术、共焦扫描激光眼底镜和高光谱成像等当前和探索性的眼科成像模式可能会为 AD 的临床评估带来希望。然而,我们还需要进一步的研究来加深了解注意力缺失症对视网膜的影响及其进展。为了推动这一领域的研究,未来的研究需要在更大范围和更多样化的群体中进行复制,并使用已确认的注意力缺失症生物标志物和标准化视网膜成像技术。这将验证潜在的注意力缺失症视网膜生物标志物,有助于早期筛查和监测。
{"title":"Alzheimer's disease pathophysiology in the Retina.","authors":"Bhakta Prasad Gaire, Yosef Koronyo, Dieu-Trang Fuchs, Haoshen Shi, Altan Rentsendorj, Ron Danziger, Jean-Philippe Vit, Nazanin Mirzaei, Jonah Doustar, Julia Sheyn, Harald Hampel, Andrea Vergallo, Miyah R Davis, Ousman Jallow, Filippo Baldacci, Steven R Verdooner, Ernesto Barron, Mehdi Mirzaei, Vivek K Gupta, Stuart L Graham, Mourad Tayebi, Roxana O Carare, Alfredo A Sadun, Carol A Miller, Oana M Dumitrascu, Shouri Lahiri, Liang Gao, Keith L Black, Maya Koronyo-Hamaoui","doi":"10.1016/j.preteyeres.2024.101273","DOIUrl":"10.1016/j.preteyeres.2024.101273","url":null,"abstract":"<p><p>The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.</p>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatic visual evoked potentials: A review of physiology, methods and clinical applications. 色觉视觉诱发电位:生理学、方法和临床应用综述。
IF 18.6 1区 医学 Q1 Medicine Pub Date : 2024-07-01 Epub Date: 2024-05-16 DOI: 10.1016/j.preteyeres.2024.101272
Oliver R Marmoy, Manca Tekavčič Pompe, Jan Kremers

Objective assessment of the visual system can be performed electrophysiologically using the visual evoked potential (VEP). In many clinical circumstances, this is performed using high contrast achromatic patterns or diffuse flash stimuli. These methods are clinically valuable but they may only assess a subset of possible physiological circuitries within the visual system, particularly those involved in achromatic (luminance) processing. The use of chromatic VEPs (cVEPs) in addition to standard VEPs can inform us of the function or dysfunction of chromatic pathways. The chromatic VEP has been well studied in human health and disease. Yet, to date our knowledge of their underlying mechanisms and applications remains limited. This likely reflects a heterogeneity in the methodology, analysis and conclusions of different works, which leads to ambiguity in their clinical use. This review sought to identify the primary methodologies employed for recording cVEPs. Furthermore cVEP maturation and application in understanding the function of the chromatic system under healthy and diseased conditions are reviewed. We first briefly describe the physiology of normal colour vision, before describing the methodologies and historical developments which have led to our understanding of cVEPs. We thereafter describe the expected maturation of the cVEP, followed by reviewing their application in several disorders: congenital colour vision deficiencies, retinal disease, glaucoma, optic nerve and neurological disorders, diabetes, amblyopia and dyslexia. We finalise the review with recommendations for testing and future directions.

对视觉系统的客观评估可通过视觉诱发电位(VEP)进行电生理分析。在许多临床情况下,都是使用高对比度消色差模式或漫反射闪光刺激进行评估。这些方法在临床上很有价值,但它们可能只能评估视觉系统中可能存在的生理回路的一部分,尤其是那些参与消色差(亮度)处理的回路。除了标准 VEPs 之外,使用色度 VEPs(cVEPs)可以让我们了解色度通路的功能或功能障碍。色度 VEP 在人类健康和疾病中的应用已得到深入研究。然而,迄今为止,我们对其基本机制和应用的了解仍然有限。这可能反映出不同研究的方法、分析和结论存在差异,从而导致其临床应用的不确定性。本综述旨在确定记录 cVEPs 的主要方法。此外,还回顾了 cVEP 的成熟和应用,以了解健康和疾病条件下色觉系统的功能。我们首先简要介绍了正常色觉的生理学,然后描述了导致我们了解 cVEPs 的方法和历史发展。随后,我们描述了 cVEP 的预期成熟过程,并回顾了它们在以下几种疾病中的应用:先天性色觉缺陷、视网膜疾病、青光眼、视神经和神经系统疾病、糖尿病、弱视和阅读障碍。最后,我们对测试和未来发展方向提出了建议。
{"title":"Chromatic visual evoked potentials: A review of physiology, methods and clinical applications.","authors":"Oliver R Marmoy, Manca Tekavčič Pompe, Jan Kremers","doi":"10.1016/j.preteyeres.2024.101272","DOIUrl":"10.1016/j.preteyeres.2024.101272","url":null,"abstract":"<p><p>Objective assessment of the visual system can be performed electrophysiologically using the visual evoked potential (VEP). In many clinical circumstances, this is performed using high contrast achromatic patterns or diffuse flash stimuli. These methods are clinically valuable but they may only assess a subset of possible physiological circuitries within the visual system, particularly those involved in achromatic (luminance) processing. The use of chromatic VEPs (cVEPs) in addition to standard VEPs can inform us of the function or dysfunction of chromatic pathways. The chromatic VEP has been well studied in human health and disease. Yet, to date our knowledge of their underlying mechanisms and applications remains limited. This likely reflects a heterogeneity in the methodology, analysis and conclusions of different works, which leads to ambiguity in their clinical use. This review sought to identify the primary methodologies employed for recording cVEPs. Furthermore cVEP maturation and application in understanding the function of the chromatic system under healthy and diseased conditions are reviewed. We first briefly describe the physiology of normal colour vision, before describing the methodologies and historical developments which have led to our understanding of cVEPs. We thereafter describe the expected maturation of the cVEP, followed by reviewing their application in several disorders: congenital colour vision deficiencies, retinal disease, glaucoma, optic nerve and neurological disorders, diabetes, amblyopia and dyslexia. We finalise the review with recommendations for testing and future directions.</p>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":null,"pages":null},"PeriodicalIF":18.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Retinal and Eye Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1